Lab 6 Name:__________________________ Checked:_____

Objectives:

Practice using the conditional operator; switch statements; do and for loops. Learn how to implement a simple experimental setup to measure response times using System.currentTimeMillis() (current system time in milliseconds).

Preparation: Response time experiment – accessing the system clock
1. Download and run ResponseTimeExperiment.java (shown on next page).

2. Run the program a few times to observe its function. Note the use of System.currentTimeMillis() to find the current time at two different points during the run, and thus obtain the amount of time elapsed between issuing of a question and the input (answer) from the user.

3. Refer to the code shown on the next page. Modify the code enclosed in the boxes, as follows:
 - Using the conditional operator, compute the value of outcome in just one line of code (replace the if/else).
 - Display the result (“Correct!” or “Incorrect.”) using a single System.out.println statement (again, use the conditional operator).
 Test your program to ensure that it functions exactly as before.

4. Annotate the code printed on the next page with the number to match each step in the algorithm (some of the numbers correspond to more than one line of code). Do the same with the actual code (insert the steps of the algorithm as comments in the code).

Algorithm:

```java
// 1. input name
// 2. print personalized welcome message & instructions
// 3. a = random int
// 4. b = random int
// 5. startTime = current time
// 6. print question using a, b
// 7. input answer
// 8. endTime = current time
// 9. outcome = 1 or 0 (answer is correct or incorrect)
// 10. reactionTime = endTime - startTime
// 11. print outcome as “Correct” or “Incorrect”
// 12. print goodbye
```

Test your program again to ensure that it still functions correctly.

5. Upload and submit ResponseTimeExperiment.java through blackboard under “Lab 6 Prep”.

Villanova University CSC 1051 www.csc.villanova.edu/~map/1051 Dr. Papalaskari
// ResponseTimeExperiment.java
// Measure response time for addition problems. // M A Papalaskari
import java.util.Scanner;
import java.util.Random;

public class ResponseTimeExperiment {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 Random rand = new Random();

 System.out.print("Please enter your name: ");
 String name = in.nextLine();

 System.out.println("Hello " + name
 + ". Please answer as fast as you can." +
 "\n\nHit <ENTER> when ready for the question.");
 in.nextLine(); // wait for user to hit <ENTER>

 int a = rand.nextInt(100);
 int b = rand.nextInt(100);

 long startTime = System.currentTimeMillis();
 System.out.print(a + " + " + b + " = ");
 String response = in.nextLine();
 int number = Integer.parseInt(response);

 long endTime = System.currentTimeMillis();
 long reactionTime = endTime - startTime;

 if (number == a + b)
 outcome = 1;
 else
 outcome = 0;

 System.out.println("That took " + reactionTime
 + " milliseconds");
 System.out.println("Thank you " + name + ", goodbye.");
 }
}
Part A: switch statement

Write a program to input a number n that symbolizes a version of the Mac OS X 10.n software. Output the name of that version of the Mac OS X 10.n software. For example, if the user inputs 8, then the program should output “Mountain Lion.” [You will need to do a little googling to find the names of the different mac software. They run from 1-10 and most of them are cats, but more recently they are joined by mountains.]

Part B. do loops

Modify your code for Lab 4b to use a do loop (that is the version of the GPA program that asks each time whether to repeat).

Part C. for-loops

Modify your code for Lab 4d to use a for-loop (that is the version of the GPA program with the exact count).

Part D. Work with ResponseTimeExperiment.java

1. Review your preparation for this lab with your parner. Check that the algorithm is noted in the right places correctly BOTH in the worksheet and the code itself.

Lab partner signature: ________________________________
2. Now consider an algorithm that repeats the experiment four times using a for-loop, while also keeping track of the number of correct answers and computing the average response time of the user – see the algorithm below. Some steps have been added (highlighted).

- Annotate the code for ResponseTimeExperiment.java in Page 2 again to add these new steps, as follows:
 - Draw a box around the code that needs to go inside the loop
 - Draw an arrow with a label in the appropriate positions for where A, B,..G need to be inserted (show an arrow and the label of the step where it should go in the code, eg, A → should go) to prepare to implement the algorithm. Be sure to mark clearly, with the appropriate letter, the exact position where code must be added.

Algorithm:
1. input name
2. print personalized welcome message & instructions

A. numCorrect = 0
B. totalTime = 0

C. repeat 4 times:
 3. a = random int
 4. b = random int
 5. startTime = current time
 6. print question using a, b
 7. input answer
 8. endTime = current time
 9. outcome = 1 or 0 (answer is correct or incorrect)
 10. reactionTime = endTime – startTime
 D. totalTime = totalTime + reactionTime
 11. print outcome as “Correct” or “Incorrect”
 E. numCorrect = numCorrect + outcome

F. averageTime = totalTime/4

G. print averageTime
H. print numCorrect
12. print goodbye

3. Add some code and restructure ResponseTimeExperiment.java to implement the new steps, using your notes from 2, above. Be sure to use a for-loop to implement the repetition of the experiment.

Hint: make sure you declare variables that measure time as long (not int).
Lab 6 Comments Name:____________________ Checked: ______

Comments on this lab, please:

What was the most valuable thing you learned in this lab?

What did you like best about this lab?

Was there any particular problem?

Do you have any suggestions for improving this lab as an effective learning experience?