1. For each of the following expressions, indicate the order in which the operators will be evaluated by writing a number beneath each operator.

 a) \(a - b / c + d \)
 \[2 \ 1 \ 3 \]
 b) \(a \% b \% c \% d \)
 \[1 \ 2 \ 3 \]
 c) \(a + (b - c) * d - e \)
 \[3 \ 1 \ 2 \ 4 \]
 d) \((a + b) * (c / d) \% e \)
 \[1 \ 3 \ 2 \ 4 \]

2. Write an algorithm that solves the following problem:

 Input an integer representing a temperature in fahrenheit; compute and output the equivalent temperature in celsius.

 Note temperature conversion formulas:
 \(^\circ C \times \frac{9}{5} + 32 = ^\circ F \)
 and
 \((^\circ F - 32) \times \frac{5}{9} = ^\circ C \)

 Variables: Ftemp, Ctemp

 Algorithm

   ```
   input Ftemp
   Ctemp = (Ftemp - 32) * 5 / 9
   print Ctemp
   ```
1. For each of the following expressions, indicate the order in which the operators will be evaluated by writing a number beneath each operator.

 a) \(a + \frac{b}{c} \times d \)
 \[3 \quad 1 \quad 2 \]

 b) \(a \mod b \div c \times d \)
 \[1 \quad 2 \quad 3 \]

 c) \((a + b) - c \times (d - e)\)
 \[1 \quad 4 \quad 3 \quad 2 \]

 d) \(a + b \div c \mod (d \% e) \)
 \[4 \quad 2 \quad 3 \quad 1 \]

2. **Write an algorithm that solves the following problem:**

 Input an integer representing a number of ounces; compute and output the equivalent as pounds and ounces.

 Note: 16 oz = 1 lb.

 Variables: totalounces, ounces, pounds

 Algorithm

   ```
   input totalounces
   pounds = totalounces / 16
   ounces = totalounces \% 16
   print pounds
   print ounces
   ```