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Abstract

Hájek and Montagna proved that the modal propositional logic ILM
is the logic of Π1-conservativity over sound theories containing IΣ1 (PA
with induction restricted to Σ1 formulas). I give a simpler proof of the
same fact.

1 Introduction

By a ”theory” we mean an effectively axiomatized theory whose language con-
tains that of PA (arithmetic).

A theory T2 is said to be Π1-conservative over a theory T1, if T1 proves every
Π1-theorem of T2. And T2 is interpretable in T1 if, intuitively, the language of
T2 can be translated into the language of T1 in such a way that T1 proves the
translation of every theorem of T2.

A theory is said to be essentially reflexive, if for any formula α it proves
PrPC(�α�) → α, where �α� is the code (Gödel number) of α and PrPC(x) is
the standard formalization of “x is the code of a formula provable in the classical
predicate calculus”.

It is known that PA is essentially reflexive, but no finitely axiomatizable
reasonable theory, including IΣ1 (PA with induction restricted to Σ1 formulas),
can be such. Indeed, suppose T is a sufficiently strong finitely axiomatized
theory. Let then Ax be the conjunction of the universal quantifiers closures of
its axioms. If T is essentially reflexive, then T � PrPC(�¬Ax�) → ¬Ax, whence

∗In some publications this name can appear as Dzhaparidze.
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T � ¬PrPC(�¬Ax�), which means that T proves its own consistency and hence,
by Gödel’s Second Incompleteness Theorem, T is inconsistent.

According to a nice fact known as Orey-Hájek characterization, if given the-
ories are essentially reflexive, one is interpretable in another if and only if one is
Π1-conservative over the other; moreover, this fact is provable in PA, so we can
say that interpretability and Π1-conservativity relations between essentially re-
flexive theories are “the same”. However, this is not true for finitely axiomatized
theories like IΣ1.

De Jongh and Veltman [5] introduced the propositional modal logic ILM ,
whose language contains two modal operators: ✷ (unary) and ✄ (binary). Be-
rarducci [1] and Shavrukov [7], independently, proved that ILM is the logic
of interpretability over PA, that is, ILM yields exactly the schemata of PA-
provable formulas, when ✷A is understood as a formalization of “A is PA-
provable” and A✄B as a formalization of “PA+B is interpretable in PA+A”.
By the Orey-Hájek characterization, this result immediately implies that ILM
is the logic of Π1-conservativity over PA as well. However, the question whether
ILM is the logic of Π1-conservativity over IΣ1 (whose logic of interpretability
was in [10] shown to be different from ILM) remained open until Hájek and
Montagna [6] found a positive answer.

In this paper I present an alternative proof of completeness of ILM as the
logic of Π1-conservativity over IΣ1 and its sound extensions; this proof is more
direct1 and therefore considerably simpler than that of Hájek and Montagna;
since, in view of the Orey-Hájek characterization this result immediately implies
completeness of ILM as the logic of interpretability over PA, this is at the same
time a new proof of the above-mentioned Berarducci-Shavrukov theorem, which
seems the simplest among those known so far.

2 Modal logic preliminaries

ILM is given as the classical propositional logic plus the rule of necessitation
� A ⇒� ✷A and the following axiom schemata (✸ = ¬✷¬):

✷(A → B) → (✷A → ✷B);
✷(✷A → A) → ✷A;

✷(A → B) → (A ✄ B);
((A ✄ B) ∧ (B ✄ C)) → (A ✄ C);

((A ✄ C) ∧ (B ✄ C)) → ((A ∨ B) ✄ C);
(A ✄ B) → (✸A → ✸B);

(✸A) ✄ A;
(A ✄ B) → ((A ∧ ✷C) ✄ (B ∧ ✷C)).

1as it appeals only to the most elementary facts about Π1-sentences and is based directly
on the natural semantics for ILM , — Veltman models.
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Thus, ILM contains the provability logic GL and, therefore, ILM � ✷A →
✷✷A (see [2]).

One can show that ILM � ✷A ↔ (¬A) ✄ ⊥, which means that ✷ can be
eliminated from the language of ILM .

A finite Veltman frame is a system 〈W, R, {Sw}w∈W 〉, where W is a finite
nonempty set (of “worlds”) and R and each Sw are binary relations on W such
that the following holds:

1. R is transitive and irreflexive;

2. each Sw is transitive and reflexive;

3. uSwv only if wRu and wRv;

4. wRuRv =⇒ uSwv;

5. uSwvRr =⇒ uRr.

A finite Veltman model is a system

〈W, R, {Sw}w∈W , |=〉,
where 〈W, R, {Sw}w∈W 〉 is a finite Veltman frame and |= is a (“forcing”) relation
between worlds and ILM -formulas such that:

• The Boolean connectives are treated in the classical way: w �|= ⊥, w |=
A → B ⇐⇒ (w �|= A or w |= B), etc.;

• w |= ✷A ⇐⇒ (for all u, if wRu, then u |= A);

• w |= A ✄ B ⇐⇒ (for all u, if wRu and u |= A, then there is v such that
uSwv and v |= B).

A formula A is said to be valid in a Veltman model 〈W, R, {Sw}w∈W , |=〉, if
w |= A for all w ∈ W .

Theorem 1 (De Jongh and Veltman [5]) ILM � A iff A is valid in all finite
Veltman models.

3 Arithmetic preliminaries

We fix a theory T containing IΣ1. For safety we assume that T is in the language
of arithmetic and T is sound, i.e. all its axioms are true (in the standard model
of arithmetic).2

2In fact it is easy to adjust our proof of the completeness theorem to the weaker condition
of Σ1-soundness of T .
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A realization is a function ∗ which assigns an arithmetical sentence p∗ to
each propositional letter p of the modal language and which is extended to
other modal formulas in the following way:

• ∗ commutes with the Boolean connectives: ⊥∗ = ⊥, A → B = A∗ → B∗,
etc.;

• (✷A)∗ = Pr(�A∗�);
• (A ✄ B)∗ = Conserv(�A∗�, �B∗�),

where Pr(�A∗�) and Conserv(�A∗�, �B∗�) are natural formalizations of “A∗ is
T -provable” and “T + B∗ is Π1-conservative over T + A∗”.

We need to introduce some more notation and terminology.
We will write �x F to say that x is the code of some T -proof of the formula

F .
“Σ1!” denotes the class of the arithmetical formulas which have an explicit

Σ1 form, i.e. ∃xF for some primitive recursive formula F . And simply “Σ1”
denotes the class of the formulas which are T -provably equivalent to some Σ1!-
formula. Similarly for Π1.

Let us fix ∃yRegwitness(x, y) as a natural Σ1!-formalization of the predicate
“x is the code of a true Σ1!-sentence”, such that (T proves that) for each Σ1!-
sentence F , T � F ↔ ∃yRegwitness(�F �, y).

Existence of the formula Regwitness(x, y) is the only not very trivial, —
but quite well known (see, e.g., [8]), — fact about Σ1- (Π1-) sentences that will
be used in the arithmetical completeness proof below.

Now, we say that a natural number k is a regular counterwitness for a Π1!-
sentence ∀xF , if Regwitness(�∃x¬F �, k̄) is true.

4 The completeness theorem

Theorem 2 ILM � A iff for any realization ∗, T � A∗.

The rest of the paper is a proof of this theorem. It has a lot of similarity with
proofs given in [3], [4], [11]. Just as in [3] and [4], I define here a Solovay function
in terms of regular witnesses rather than provability in finite subtheories (as
this is done in [1], [7], [11]). Disregarding this difference, my Solovay function
is almost the same as the one given in [11], for both works, unlike [1] or [7],
employ finite Veltman models rather than infinite Visser models.

The (=⇒) part can be checked by a routine induction on ILM -proofs, and
we are going to prove here only the (⇐=) part.

Suppose ILM �� A. Then, by Theorem 1, there is a finite Veltman model
〈W, R, {Sw}w∈W , |=〉 in which A is not valid. We may assume that W =
{1, . . . , l}, 1 is the root of the model in the sense that 1Rw for all 1 �= w ∈ W ,
and 1 �|= A.

We define a new frame 〈W ′, R′, {S′
w}w∈W ′〉:
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W ′ = W ∪ {0};

R′ = R ∪ {(0, w) : w ∈ W};

S′
0 = S1 ∪ {(1, w) : w ∈ W} and for each w ∈ W , S′

w = Sw.

Observe that 〈W ′, R′, {S′
w}w∈W ′〉 is a finite Veltman frame.

Following the “traditional” way of arithmetical completeness proofs, we are
going to embed this frame into T by means of a Solovay [9] style function
g : ω → W ′ and sentences Limw (w ∈ W ′) which assert that w is the limit of
g. This function will be defined in such a way that the following basic lemma
holds:

Lemma 3
a) T proves that g has a limit in W ′, i.e. T � ∨{Limr : r ∈ W ′}.
b) If w �= u, then T � ¬(Limw ∧ Limu).
c) If wR′u, then T + Limw proves that T �� ¬Limu.
d) If w �= 0 and not wR′u, then T + Limw proves that T � ¬Limu.
e) If uS′

wv, then T + Limw proves that T + Limv is Π1-conservative over
T + Limu.

f) Suppose wR′u and V is a subset of W ′ such that for no v ∈ V do we have
uSwv. Then T +Limw proves that T +

∨{Limv : v ∈ V } is not Π1-conservative
over T + Limu.

g) Lim0 is true.

To deduce the main thesis from this lemma, we define a substitution ∗ by
setting for each propositional letter p,

p∗ =
∨

{Limr : r ∈ W, r |= p}.

Lemma 4 For any w ∈ W and any ILM -formula B,
a) if w |= B, then T + Limw � B∗;
b) if w �|= B, then T + Limw � ¬B∗.

PROOF by induction on the complexity of B. If B is atomic, then the clause
(a) is evident and the clause (b) is also clear in view of 3b. The cases when B
is a Boolean combination are straightforward; and since ✷C is ILM -equivalent
to (¬C) ✄ ⊥, it is enough to consider only the case when B = C1 ✄ C2.

Assume w ∈ W . Then we can always write wRx and xSwy instead of wR′x
and xS′

wy.
Let αi = {r : wRr, r |= Ci} (i = 1, 2).
First we establish that for each i = 1, 2,

(*) T + Limw proves that T � C∗
i ↔ ∨{Limr : r ∈ αi}.
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Indeed, argue in T + Limw. Since each r ∈ αi forces Ci, we have by the
induction hypothesis (clause (a)) that for each such r, T � Limr → C∗

i , whence
T � ∨{Limr : r ∈ αi} → C∗

i . Next, according to 3a, T � ∨{Limr : r ∈ W ′}
and, according to 3d, T disproves every Limr with not wRr; consequently,
T � ∨{Limr : wRr}; at the same time, by the induction hypothesis (clause
(b)), C∗

i implies in T the negation of each Limr with r �|= Ci. We conclude that
T � C∗

i → ∨{Limr : wRr, r |= Ci}, i.e. T � C∗
i → ∨{Limr : r ∈ αi}. (*) is

thus proved. Now continue:

(a) Suppose w |= C1 ✄C2. Argue in T +Limw. By (*), to prove that T +C∗
2

is Π1-conservative over T +C∗
1 , it is enough to show that T +

∨{Limr : r ∈ α2}
is Π1-conservative over T +

∨{Limr : r ∈ α1}. Consider an arbitrary u ∈ α1

(the case with empty α1 is trivial, for any theory is conservative over T + ⊥).
Since w |= C1 ✄ C2, there is v ∈ α2 such that uSwv. Then, by 3e, T + Limv is
Π1-conservative over T + Limu. Then so is T +

∨{Limr : r ∈ α2} (which is
weaker than T + Limv). Thus, for each u ∈ α1, T +

∨{Limr : r ∈ α2} is
Π1-conservative over T +Limu. Clearly this implies that T +

∨{Limr : r ∈ α2}
is Π1-conservative over T +

∨{Limr : r ∈ α1}.

(b) Suppose w �|= C1 ✄ C2. Let us then fix an element u of α1 such that for
no v ∈ α2 do we have uSwv. Argue in T +Limw. By 3f, T +

∨{Limr : r ∈ α2}
is not Π1-conservative over T + Limu. Then neither is it Π1-conservative over
T +

∨{Limr : r ∈ α1} (which is weaker than T + Limu). This means by (*)
that T + C∗

2 is not Π1-conservative over T + C∗
1 . Q.E.D.

Now we can pass to the desired conclusion: since 1 �|= A, Lemma 4 gives
T � Lim1 → ¬A∗, whence T �� ¬Lim1 =⇒ T �� A∗. But we have T �� ¬Lim1

because this fact is derivable in the sound theory T from the true (according to
3g) sentence Lim0.

Our remaining duty now is to define the function g and prove Lemma 3.
The recursion theorem enables us to define this function simultaneously with
the sentences Limw (for each w ∈ W ′), which, as we have mentioned already,
assert that w is the limit of g, and formulas ∆wu(y) (for each pair (w, u) with
wR′u), which we define by

∆wu(y) ≡ ∃t > y(g(t) = ū ∧ ∀z(y ≤ z < t → g(z) = w̄)).

Definition 5 (of the function g)
We define g(0) = 0.
Assume now g(y) has been defined for every y ≤ x, and let g(x) = w. Then

g(x + 1) is defined as follows:
1. Suppose wR′u, n ≤ x and for all z with n ≤ z ≤ x we have g(z) = w.

Then, if �x Limu → ¬∆wu(n̄), we define g(x + 1) = u.
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2. Else, suppose m ≤ x, F is a Π1!-sentence and the following holds:
a) F has a regular counterwitness which is ≤ x;
b) �m Limu → F ;
c) wSg(m)u;
d) m is the least number for which such F and u exist, i.e. there are no

m′ : m′ < m, world u′ and Π1!-sentence F ′ satisfying the conditions (a)–(c)
when m′, u′ and F ′ stand for m, u and F .

Then we define g(x + 1) = u.
3. In all the remaining cases g(x + 1) = g(x).

It is not hard to see that g is primitive recursive.
Before we start proving Lemma 3, let us agree on some jargon and prove

two auxiliary lemmas.
When the transfer from w = g(x) to u = g(x + 1) is determined by 5.1, we

say that at the moment x + 1 the function g makes (or we make) an R′-move
from the world w to the world u. If this transfer is determined by 5.2, then we
say that an S′-transfer takes place and call the number m from 5.2 the rank of
this S′-transfer. Sometimes the S′-transfer leads to a new world, but “mostly”
it does not, i.e. (u =)g(x + 1) = g(x)(= w), and then it is not a move in the
proper sense. Those S′-transfers which lead to a new world we call S′-moves.
As for R′-transfers, they (by irreflexivity of R′) always lead to a new world, so
we always say “R′-move” instead of “R′-transfer”.

In these terms, the formula ∆wu(n) asserts that beginning from the moment
n (but perhaps also before this moment) and until some moment t, we stay at
the world w without any motion and then, at the moment t, we move directly
to u.

Intuitively, we make an R′-move from w to u, where wR′u, in the following
situation: since some moment n and up to now we have been staying at the
world w, and at the present moment we have reached evidence that T + Limu

thinks that the first (proper) move which happens after passing the moment n
(and thus our next move) cannot lead directly to the world u; then, to spite this
belief of T + Limu, we just move to u.

And the conditions for an S′-transfer from w to u can be described as follows:
We are staying at the world w and by the present moment we have reached
evidence that T + Limu proves a false Π1!-sentence F . This evidence consists
of two components: 1) a regular counterwitness, which indicates that F is false,
and 2) the rank m of the transfer, which indicates that T + Limu � F . Then,
as soon as wSg(m)u, the next moment we must be at u (move to u, if u �= w,
and remain at w, if u = w); if there are several possibilities of this transfer,
we choose the one with the least rank. Besides, the necessary condition for an
S′-transfer is that in the given situation an R′-move is impossible.

Lemma 6 (T �:) For each natural number m and each w ∈ W ′, T + Limw

proves that no S′-transfer to w can have rank which is less than m.
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PROOF. Indeed, “the rank of an S′-transfer is < m” means that T + Limw

proves a false (i.e. one with a regular counterwitness) Π1!-sentence F and the
code of this proof (i.e. of the T -proof of Limw → F ) is smaller than m. But the
number of all Π1!-sentences with such short proofs is finite, and as T + Limw

proves each of them, it also proves that none of these sentences has a regular
counterwitness (recall our assumptions about the formula Regwitness(x, y)).

Lemma 7 (T �:) If g(x)R′w, then for all y ≤ x, g(y)R′w.

PROOF. Suppose g(x)R′w and y ≤ x. We proceed by induction on n = x − y.
If y = x, we are done. Suppose now g(y + 1)R′w. If g(y) = g(y + 1), we are
done. If not, then at the moment y +1 the function makes either an R′-move or
an S′-move. In the first case we have g(y)R′g(y + 1) and, by transitivity of R′,
g(y)R′w; in the second case we have g(y)S′

vg(y + 1) for some v, and the desired
thesis then follows from the property 5 of Veltman frames.

PROOF OF LEMMA 3. In each case below, except (g), we reason in T .

(a):
First observe that there is z such that for all z′ ≥ z, not g(z′)R′g(z′ + 1).
Indeed, suppose this is not the case. Then, by Lemma 7, for all z there is

z′ with g(z)R′g(z′). This means that there is an infinite (or “sufficiently long”)
chain w1R′w2R′ . . ., which is impossible because W ′ is finite and R′ is transitive
and irreflexive.

So, let us fix this number z. Then we never make an R′-move after the
moment z. We claim that S′-moves can also take place at most a finite number
of times (whence it follows that g has a limit and this limit is, of course, one of
the elements of W ′).

Indeed, let x be an arbitrary moment after z at which we make an S′-move,
and let m be the rank of this move. Taking into account reflexivity of the
relations Sw, a little analysis of the condition 5.2 convinces us that the rank of
each next S′-move is less than that of the previous one, so S′-moves can take
place at most m times after passing x.

(b):
Clearly g cannot have two different limits w and u.

(c):
Assume w is the limit of g and wR′u. Let n be such that for all x ≥ n,

g(x) = w. We need to show that T �� ¬Limu. Deny this. Then T � Limu →
¬∆wu(n̄) and, since every provable formula has arbitrary long proofs, there is
x ≥ n such that �x Limu → ¬∆wu(n̄); but then, according to 5.1, we must
have g(x + 1) = u, which, as u �= w (by irreflexivity of R′), is a contradiction.
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(d):
Assume w �= 0, w is the limit of g and not wR′u.
If u = w, then (since w �= 0) there is x such that g(x) = v �= u and

g(x + 1) = u. This means that at the moment x + 1 we make either an R′-
move or an S′-move. In the first case we have T � Limu → ¬∆vu(n̄) for
some n for which, as it is easy to see, the Σ1!-sentence ∆vu(n̄) is true, whence,
by Σ1!-completeness, T � ¬Limu. And if an S′-move is the case, then again
T � ¬Limu because T +Limu proves a false (with a ≤ x regular counterwitness)
Π1!-sentence.

Suppose now u �= w. Let us fix a number z with g(z) = w. Since g is
primitive recursive, T proves that g(z) = w.

Now argue in T + Limu: Since u is the limit of g and g(z) = w �= u, there
is a number x with x ≥ z such that g(x) �= u and g(x + 1) = u. Since not
(w =)g(z)R′u, we have by Lemma 7 that

(*) for each y with z ≤ y ≤ x, not g(y)R′u.

In particular, not g(x)R′u and the transfer from g(x) to g(x + 1)(= u) can
be determined only by 5.2. Then (*) together with the property 3 of Veltman
frames and 5.2c, implies that the rank of this S′-move is less than z, which, by
Lemma 6, is a contradiction.

Thus, T + Limu is inconsistent, i.e. T � ¬Limu.

(e):
Assume uS′

wv �= u (the case v = u is trivial). Suppose w is the limit of g,
F is a Π1-sentence and T �z Limv → F . We may suppose that F ∈ Π1! and
that z is sufficiently large, namely, g(z) = w. Fix this z. We need to show that
T + Limu � F .

Argue in T + Limu. Suppose not F . Then there is a regular counterwitness
c for F . Let us fix a number x > z, c such that g(x) = g(x + 1) = u (as u is the
limit of g, such a number exists). Then, according to 5.2, the only reason for
g(x + 1) = u �= v can be that we make an S′-transfer from u to u and the rank
of this transfer is less than z, which, by Lemma 6, is not the case. Conclusion:
F (is true).

(f):
Assume w is the limit of g, wR′u, V ⊆ W ′ and for each v ∈ V , not uS′

wv.
Let n be such that for all z ≥ n, g(z) = w. By primitive recursiveness of g,

T proves that g(n) = w. By 5.1, T +Limu �� ¬∆wu(n̄). So, as ¬∆wu(n̄) is a Π1-
sentence, in order to prove that T +

∨{Limv : v ∈ V } is not Π1-conservative
over T +Limu, it is enough to show that for each v ∈ V , T +Limv � ¬∆wu(n̄).
Let us fix any v ∈ V . According to our assumption, not uS′

wv and, by reflexivity
of S′

w, u �= v.
Argue in T + Limv. Suppose, for a contradiction, that ∆wu(n) holds, i.e.

there is t > n such that g(t) = u and for all z with n ≤ z < t, g(z) = w. As

9



v is the limit of g and v �= u, there is t′ > t such that g(t′ − 1) �= v and at
the moment t′ we arrive to v to stay there for ever. Let then x0 < . . . < xk be
all the moments in the interval [t, t′] at which R′- or S′-moves take place, and
let u0 = g(x0), . . . , uk = g(xk). Thus t = x0, t′ = xk, u = u0, v = uk and
u0, . . . , uk is the route of g after departing from w (at the moment t).

Let now j be the least number among 1, . . . , k such that for all j ≤ i ≤ k,
not u0R

′ui. Note that such a j does exist because at least j = k satisfies this
condition (otherwise, if (u =)u0R

′uk(= v), the property 4 of Veltman frames
would imply uS′

wv).
Note also that for each i with j ≤ i ≤ k, the move to ui cannot be an R′-

move. Indeed, otherwise we must have ui−1R′ui, whence, by Lemma 7, u0R′ui,
which is impossible for i ≥ j.

Thus, beginning from the moment xj (inclusive), each move is an S′-move.
Moreover: for each i with j ≤ i ≤ k, the rank of the S′-move to ui is less than
x0. For otherwise the property 3 of Veltman frames together with Lemma 7
would give by 5.2c that u0R′ui. On the other hand, since consecutive S′-moves
decrease the rank (as we noted in the proof of (a) above) and since the rank of
the S′-move to uk cannot be less than n (Lemma 6), we conclude: for each i with
j ≤ i ≤ k, the rank of the S′-move to ui is in the interval [n, x0 − 1]. But the
value of g in this interval is w, and by 5.2c this means that uj−1S′

wujS
′
w . . . S′

wuk.
At the same time, we have either u0 = uj−1 or u0R′uj−1. In both cases we then
have u0S′

wuj−1 (in the first case by reflexivity of S′
w and in the second case by

the property 4 of Veltman frames), whence, by transitivity of S′
w, u0S′

wuk, i.e.
uS′

wv, which is a contradiction.
Conclusion: T + Limv � ¬∆wu(n̄).

(g):
By 3a, as T is sound, one of the Limw (w ∈ W ′) is true. Since for no w do

we have wR′w, 3d means that each Limw, except Lim0, implies in T its own
T -disprovability and therefore is false. Consequently, Lim0 is true. Q.E.D.

This, in turn, completes the proof of Theorem 2.
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