
A constructive game semantics for the language

of linear logic

Giorgi Japaridze∗

Department of Computer and Information Science
University of Pennsylvania

200 S. 33rd Street
Philadelphia, PA 19104-6389, USA

giorgi@saul.cis.upenn.edu

March 15, 1996

Abstract

I present a semantics for the language of first order additive-multiplicative
linear logic, i.e. the language of classical first order logic with two sorts
of disjunction and conjunction. The semantics allows us to capture in-
tuitions often associated with linear logic or constructivism such as sen-
tences=games, sentences=resources or sentences=problems, where “truth”
means existence of an effective winning (resource-using, problem-solving)
strategy.

The paper introduces a decidable first order logic ET in the above
language and gives a proof of its soundness and completeness (in the full
language) with respect to this semantics. Allowing noneffective strategies
in the latter is shown to lead to classical logic.

The semantics presented here is very similar to Blass’s game semantics
(A.Blass, “A game semantics for linear logic”, APAL, 56). Although there
is no straightforward reduction between the two corresponding notions of
validity, my completeness proof can likely be adapted to the logic induced
by Blass’s semantics to show its decidability (via equality to ET), which
was a major problem left open in Blass’s paper.

The reader needs to be familiar with classical (but not necessarily
linear) logic and arithmetic.

∗The author is grateful for support from the University of Pennsylvania, the National Sci-
ence Foundation (on grants CCR-9403447 and CCR-9057570), and the Institute for Research
in Cognitive Science at the University of Pennsylvania.

1

1 Introduction

One of the most controversial points of logical semantics is the existential quan-
tifier,

. . . ∃x . . . ,

read as

. . . there exists x such that . . . ,

or, sometimes, as

. . . there can be found x such that

The two readings are usually perceived as synonyms, and still the difference
between them is crucial. “There exists” sounds metaphysical, whereas “can be
found” means something that deals with reality. To leave alone the philosophy
on the right of “existence” of the classical notion of existence, it simply has no
practical meaning. Consider the sentence

For every disease there is a medicine which cures that disease.

If there is no way of finding, for each disease, a cure of it but we still know
somehow that this sentence is true in the classical sense, we have no reason to
be happier than we would be in the case if it were false.1 In general, truth or
falsity of a sentence can concern us only as far as this can signify something,
can somehow be reflected in reality.

Of course “can be found” is a relative notion. Found by whom? If by God
or another almighty being, then “exists” is really a synonym of “can be found”.
But the most interesting specification of “by whom” is by a Turing machine.

This treatment of the existential quantifier, when existence means being
possible to be found by a machine, is captured by the nonclassical concept of
“truth” which I suggest in this work and which will be called effective truth.
The gist of the semantics of effective truth is that sentences are considered as
certain tasks, problems which are to be solved by a machine, that is, by an agent
who has an effective strategy for doing this; effective truth means existence of
such a strategy.

The most convenient way of shaping this approach is to build all the seman-
tics in terms of games:

a task (problem) = the task (problem) of winning a certain game.

1A naive opponent could object: The classical truth of this sentence means that we can
try all the chemical stuffs, one by one, and sooner or later, one of them will work, so we do
have a reason to be happy. Then I would give two answers in the same naive manner: First,
what the opponent suggests already is a way of finding the medicine, and second: in fact this
way is hardly a good way, because the poor sick man will, most likely, be poisoned and die
before we reach the appropriate medicine.

2

There are two players in our games: Proponent, asserting a sentence, and
Opponent who tries to refute it. Proponent, who represents me (us), is supposed
to follow only effective strategies, whereas Opponent can use any strategy, for
he is meant to represent blind forces of nature, or the devil himself.

The universal quantifier will always mean Opponent’s move and the existen-
tial quantifier will mean Proponent’s move. The above “medical” proposition
can now be understood as the game each play of which consists of two moves:
the first move is made by Opponent, who names an arbitrary disease d, and
the second move is Proponent’s, who must name a medicine m; the play is won
by Proponent, if m really is a cure of d. Effective truth of this proposition can
now really be a reason for leading a quiet life: we have an effective strategy
(machine) such that, using it, we can always find a cure of any disease sent to
us by the devil.

The connective ∨ will be treated in the same manner as the existential
quantifier. Say,

∀x(x ∈ P ∨ x �∈ P)

will be understood as the game each play of which, again, consists of two moves:
first Opponent chooses an object n, which leads to the position n ∈ P ∨ n �∈ P ,
and then Proponent chooses between left and right, getting thus one of the
positions n ∈ P or n �∈ P ; the play is won by Proponent, if n belongs to P and
he has chosen left, or n does not belong to P and right has been chosen. It is
clear that effective truth of this proposition means nothing but decidability of
the predicate x ∈ P .

In general, saying that a given sentence is effectively true, we always assert
that certain relation similar to decidability (but maybe much more sophisticated
than the latter) holds, as, e.g., the binary relation expressed by the sentence
∀x(x ∈ P ∨ x ∈ Q). Effective truth of this sentence means that there is an
effective way of choosing, for each object a, one of the two sets P , Q such that
a belongs to this set.

In the above examples the operator ∨ connects atomic formulas (games). In
a more general case, for Proponent, to win the game α1 ∨ α2 means that after
he has chosen one of the components αi, he must continue playing and win the
game αi, whereas the other component should be abandoned for ever. There is
however another natural sort of disjunction, denoted by �. The position α1�α2

does not oblige Proponent to choose one of the αi and give up the other. He can
make a move in one of the components, reserving at the same time the other,
and switch any moment from α1 to α2 and back; the task is, playing in fact
simultaneously in the two components, to win at least in one of them.

Strict definitions will be given in the main text (sections 2 and 3), but now, in
order to develop intuition, we continue discussing some more “naive” examples.

I am in prison. My prison cell has two doors locked from the outside, the
left-hand door and the right-hand door. My goal is to escape, and for that it is
enough to pass through one of the doors. I happen to know that tonight one of

3

the doors has been unlocked. Consider the proposition

The left-hand door is unlocked or the right-hand door is unlocked.

In order to escape it is enough for me to be able to “solve” this game (prob-
lem), in the role of Proponent, with “or” understood as �: it is not necessary
to be able to determine, at the very beginning, exactly which door is unlocked,
I can simply try both and one of them will turn out to be unlocked. I write
“solve” with quotation marks because in this game there are no moves at all
and, under our assumption that one of the doors is really unlocked, it is trivially
won.

Let us now slightly change the situation: the doors were not locked but
mined, and tonight someone has removed the mine from one of the doors. Yes,
we need now just ∨, and � will not do any more.

We treat negation ¬ in the following way: the rules of the game ¬α are the
same as of α, only with the roles of Proponent and Opponent interchanged.

Example: Let C be a version of chess to win which for Proponent means to
win a usual chess play within at most 100 moves, playing white. Then ¬C will
be the game to win which for Proponent means not to lose within 100 moves a
chess play, playing black.2

Notice that the classical principle ¬¬α ≡ α does hold with our negation:
after interchanging the roles twice, each player comes to his initial role. That
means that all classical dualities work. In particular, ∀ can be defined in terms
of (∃, ¬) by ∀xα(x) ≡ ¬∃x¬α(x).

As the game of chess has been mentioned, a temptation arises to discuss one
more example (which, however, must not be very original). Consider the game

C�¬C,

C being defined as above. This is in fact a play on two chessboards. On the left
board Proponent plays white and on the right one he plays black. Proponent’s
task is to win in the sense of usual chess (well, with the within-100-moves
amendment) on one of the chessboards. As switching components in a �-play
is Proponent’s privilege, he has to move only in the case when the chess rules
on both boards oblige him to move. I.e., as soon as Opponent has to move at
least on one of the chessboards, Proponent can wait until Opponent makes this
move.

I the Proponent, being not very good at chess, still can win this game even
if my opponent is the world champion Kasparov, if I use the following strategy
(solution): After Kasparov makes his first move on the right chessboard (where
he plays white), I repeat the same move on the left chessboard (where I play
white), then copy Kasparov’s reply to this move back on the right chessboard

2In this example C is not a proposition but rather a “pure” game, and the propositional
connective ¬ is thus an operation on games. But this is normal because propositions for us
are nothing but games, and propositional connectives — operations on games.

4

and so on. This winning strategy can be used for any game of the type α�¬α,
which means that the principle α�¬α is valid in our sense.

As for the game C ∨¬C, where at the very beginning I have to choose one of
the chessboards and then win just on it, I have little chance to defeat Kasparov.3

To each sort of disjunction corresponds its dual conjunction, so we have two
conjunctions ∧ and
, α ∧ β formally defined as ¬(¬α ∨ ¬β) and α
 β as
¬(¬α�¬β).

For example, if I play with Kasparov the game C�¬C, to Kasparov this is
the game ¬C
C. He has to win on both chessboards. Besides, he has to move
as soon as the chess rules oblige him to move on at least one of the boards.

Using the terminology of linear logic, we shall call ∨ the additive disjunc-
tion, ∧ the additive conjunction, � the multiplicative disjunction and
 the
multiplicative conjunction.

That we use some terminology of linear logic is no accident. The logic of ef-
fective truth, i.e. the set of always effectively true sentences (like α�¬α), called
effective tautologies, turns out to be an extension of Girard’s [4] multiplicative-
additive linear logic (MALL), in fact, a proper extension of MALL + weakening
(so called BCK or Affine Logic), and the behavior of our additive and mul-
tiplicative connectives is very much similar to the behavior of those in linear
logic.

Linear logic and other substructural logics are often called “resource logics”.
The people who first introduced logics of this type had some resource intuition
in their minds, although this intuition has never been formalized as a strict
semantics for the full language. And the name “resource logics” is related with
some syntactic characteristics of these logics rather than justified semantically.
These syntactic characteristics are determined by the forbidden rules of con-
traction or weakening. If we call formulas in a sequent resources, and read the
sequent A1, . . . , An ⇒ Γ as “The collection A1, . . . , An of resources is enough for
getting Γ” (let us not try to specify what “getting” means), then the contraction
rule

A,A,Θ ⇒ Γ
A,Θ ⇒ Γ

says something like that you always can double any of your resources; that is,
if the collection A,A,Θ was enough for getting Γ, then, this rule says, so is the
collection A,Θ, because you can double A in in the latter.

And the weakening rule
Θ ⇒ Γ

A,Θ ⇒ Γ
says that you always can reduce the resources you possess; that is, if you can
achieve Γ with the resource Θ, then so can you with the resource A,Θ, because

3However, taking into account that there is only a finite number of all possible plays of
C, the game C ∨ ¬C has an effective solution (winning strategy for me), even if no modern
machine is strong enough to follow this strategy. Still, a little bit more carefully chosen
example would convince us that the game α ∨ ¬α is not always effectively solvable.

5

the latter can be reduced back to Θ.
Then, the justification for forbidding the contraction rule is that you can-

not use more resources than you possess. The justification for forbidding the
weakening rule sounds more odd: you have to use all the resources you possess.

Our logic of effective truth, too, is “resource conscious”, and this is a natural
consequence of the game-semantical approach.

Sentences in the classical logic are “static”, they are given one of the two
values 0 or 1, once and for ever. That’s why a (sub)sentence, occuring more
than once in a sentence or a sequent, is still, in all reasonable senses, the same in
each occurrence; the quantity of these occurrences does not matter, and the rule
of contraction works. As for the game semantics, sentences there are treated
as something dynamic; two different occurrences of one and the same sentence
denote one and the same game, i.e. one and the same set of potential plays, but
in the process of playing up this game, the two occurrences can be realized as
different plays of one and the same game. This is just what makes, say, α
 α
different from α. This is better illustrated by appealing again to chess.

In the above example with the game C�¬C Proponent’s winning strategy
consisted in ensuring that the two occurrences of C in C�¬C were realized
as one and the same play. However, this trick fails to work with the game
C�(¬C
 ¬C), which is a game on three chessboards (chessboards NN 1,2 and
3, corresponding to the three occurrences of C, in their order from left to right).
Kasparov can play different openings on the second and the third chessboards
(where he plays white), and I can now only ensure that the play on the first
chessboard coincides with the play on one of the chessboards N2 or N3, let it be
N2. Then Kasparov can win on the chessboards NN 1 and 3 and, although I will
have won on the chessboard N2, the whole play will be lost by me, because for
winning C�(¬C
 ¬C) it was necessary for me to win on the first chessboard
or to win on both the second and the third chessboards.

Not only do resource-conscious effects arise as a consequence of the game-
semantical approach, but our game semantics apparently has a chance to claim
that it is a formalization of the intuitive “resource semantics”. Let us speculate
a little bit on this.

The things we call “resources” in everyday life are different in their nature:
these can be, say, money, or electrical energy, or time and space (for compu-
tational operations). The feature which seems to be common for most things
we call resources is that a resource is something necessary and/or enough for
getting (achieving, accomplishing, obtaining, converting into) something. This
suggests the first idea on the way of building a resource semantics: A resource
must be characterized by the set of the things into which it can be converted.

To proceed, let us consider some examples. The style of most examples
below is rather standard and Girard is the author of the sort of philosophy they
support.

6

Today, in the situation of economic chaos which has followed the collapse of
the USSR, two currencies are circulating in the ex-Soviet Republic of Georgia
(my home country): Russian Rubles (RR) and Georgian coupons (GC). They
are not easily convertible into each other, and it is even more problematic to
convert them into dollars. However, if you are lucky enough to have a few
dollars, you’ll have no problems converting them into rubles or coupons, — any
bank would buy dollars from you, offering for 1 dollar 1000 rubles or 1000000
coupons, — whichever you like.

Thus, the following two implications are true:

• If you have $1, then you can get 1000 RR.

• If you have $1, then you can get 1000000 GC.

But is then the sentence

• If you have $1, then you can get 1000 RR and you can get 1000000 GC

true? Well, according to the classical logic it certainly is, but in the everyday
language the above sentence, which could be shortened as

If you have $1, then you can get 1000 RR and 1000000 GC,

would be more likely understood as that if you have $1, then you can get both
1000 RR and 1000000 GC so that you can put the rubles into one pocket and
the coupons into another. In this case the above implication is not true: you
need $2 rather than $1 in the antecedent. Just at this point we arrive at the idea
of considering two sorts of conjunction-like operations on resources: ∧ and
.
To have the resource A ∧B means to have an option to convert it either into A
or into B, — whichever you like, but only one of them. And to have the resource
A
B means something more: It means to have both resources A and B and to
be able to spend each of them its own way. Thus, having 1$ implies having the
resource 1000RR ∧ 1000000GC, but not the resource 1000RR
 1000000GC.

Although coupons are the only legal currency in Georgia, because of the
hyperinflation most people prefer to have rubles rather than coupons. The
government still tries to strengthen coupons. It is not forbidden to accept
rubles, but at least in the state-owned stores the salesmen are obliged to also
accept coupons if the customer prefers to pay them instead of rubles by the
rate 1RR = 1000GC. E.g., a salesman who is selling a bottle of wine can get
for it 1000 rubles or 1000000 coupons, but he can never know which of these
two. This situation describes the disjunction-like operator ∨ on resources. The
sentence

• If the salesman has 1 bottle of wine, then he can get 1000RR∨1000000GC

is true, whereas both the sentences

7

• If the salesman has 1 bottle of wine, then he can get 1000RR

and

• If the salesman has 1 bottle of wine, then he can get 1000000GC,

where “can get” means “will get if wants” are false. We can see at this point
that a resource cannot be fully characterized by the set of the things into which
it can be immediately converted, — this set is the same, {1000RR, 1000000GC},
for the two resources:

• 1$

and

• 1bottle of wine,

whereas the first resource is evidently stronger than the second. What makes
different these two resources is the nature of this conversion. If I am the posses-
sor, in the first case it is me who chooses between 1000RR and 1000000GC, but
in the second case it is not me. This is what makes the possessor of 1$ richer
than the possessor of a bottle of wine.

Thus, a resource is characterized by two parameters: 1) the set of objects
into which the resource can be immediately converted and 2) one of the two
labels, — say, 0 and 1, where the label 0 indicates that the object into which
the resource will be converted is chosen by the possessor of the resource, and the
label 1 indicates that this choice is done by “somebody else”. We can notice now
that we have come to a game understanding of resources: resources are nothing
but positions of a game; “A can be immediately converted into B” means that
the transfer from the position A to the position B is a legal move; finally, the
label 0 (resp. 1) for A means that it is Proponent’s (resp. Opponent’s) move in
the position A.

Usually a resource is considered as just a means for achieving some goal, and
the value of a resource is associated only with its potential convertibility into a
(the) goal. We can consider goals as special sort of resources which cannot or
should not be any more converted into anything else. If a resource is not a goal
but, like a goal, is not any more convertible into anything, then it is a dead end:
anyone who has reached a dead end has missed the possibility to reach a (the)
goal.

Example: the goal is to get rid of my headache, and I have the resource of
1$ for that purpose. I can convert this dollar into an aspirin, then, taking it,
I can “convert” the latter into its effect on the organism. If this relieves my
headache, the goal is achieved. Otherwise I am at the situation of a dead end:
the resources are spent, but the goal is missed.

We associate the label 1 with goals and the label 0 with dead ends. Reaching
a goal means winning the play, and hitting a dead end means losing it. The

8

purely “game” intuition behind this condition of losing a play is that the label
1 not only is Proponent’s privilege to choose the next move, but it is also his
duty to do so; however, at a dead end Proponent cannot carry out this duty
because there are no more possible moves. The intuition behind the condition
of winning a game is symmetric.

Which resources do we accept as “good”? — Just those which can ulti-
mately be converted into goals. “Can be converted” here means that there is a
(Proponent’s) strategy which guarantees reaching a goal. And it is natural to
require such a strategy to be effective.

We have not yet mentioned negation as an operator on resources. The
intuition behind the negation ¬A of a resource A can be characterized by saying
that the following two acts are equivalent:

• to spend A;

• to get ¬A.

A few more words about the operator
. Its exact behavior will be defined in
Section 3, and it will be seen from that definition that in general
 works as
an operator that “adds up” resources, so that 1$
 1$ is equal to something
like 2$. However, if A is a terminal resource such as a goal or a dead end, then
our treatment of
 will yield the equivalence of A
 A and A. This should not
confuse us. For, e.g., the situation

No more headache
 No more headache

is not any “better” than simply

No more headache.

They both mean nothing but that my goal of getting rid of the headache is
achieved.

As for 1$
 1$, it is “better” than 1$ because it can be converted into
aspirin
Tylenol, and taking two different headache medicines gives me more
chance to achieve the goal of no more headache.

I mentioned above that the logic of effective truth is a proper extension of
BCK; on the other hand, it is strictly included in classical logic, where the
language of the latter is meant to be augmented with � and
, which are
thought of as synonyms of ∨ and ∧, respectively.

The nice fact is that the logic of effective truth, in the full language, turns
out to be decidable (in polynomial space), both at the propositional and the
predicate levels, which contrasts with the undecidability of classical predicate
logic. This is the focal result of the present work and its proof takes about 70%
of the rest of the paper.

One more thing is worth mentioning here. As soon as we remove the re-
quirement of effectiveness for Proponent’s strategies in our games and allow

9

any strategies, we get classical logic, where the distinction between the additive
and the multiplicative versions of disjunction and conjunction simply disap-
pears. Thus, classical logic and our variant of “linear logic” result from two
special cases of one general semantical approach.

In the end, some historical remarks. Apparently Lorenzen [7] was the first to
introduce a game semantics, in the late 50’s. He suggested that the meaning of a
proposition should be specified by establishing the rules of treating it in a debate
(game) between a proponent who asserts the proposition and an opponent who
denies it.

Lorenzen’s approach describes logical validity exclusively in terms of rules
without appealing to any kind of truth values for atoms, and this makes the
semantics somewhat vicious (to my mind) as it looks more like just a “pure”
syntax rather than a semantics.

Subsequently a lot of more work on game semantics was done by Lorenz [6],
Hintikka and his group [3], and a number of other authors.

The notion of effective truth introduced in this paper, though defined in
game-semantical terms, is in fact more similar to, say, Kleene’s [5] recursive
realizability, specifically, in what concerns the treatment of additive connectives
and quantifiers (which are nothing but additives, again). At the same time, the
predicate of recursive realizability is nonarithmetical, whereas the predicate of
effective truth of an arithmetical sentence (where the latter is allowed to contain
multiplicative connectives along with additives) has the complexity Σ0

3.
To the comparison of recursive realizability and effective truth should be

added that not all the recursively realizable sentences are true in the classi-
cal sense (e.g. some sentences of the form ¬∀x(

φ(x) ∨ ¬φ(x)) are recursively
realizable), whereas effective truth is only a “strong version” of classical truth.

I elaborated this semantics some time before writing the present paper, and
presented it in the talk “The logic of effective truth” at the Logic and Computer
Science conference in Marseille (June 1992). At the same conference I met
Andreas Blass and learned that he had found, — earlier than I, — a very similar
semantics. It is described in his remarkable paper [2], where the decidability of
the following two fragments of the corresponding logic is established:

1. The multiplicative propositional fragment, i.e. the fragment that uses only
the connectives ¬, � and
.

2. The fragment consisting of additive, i.e. �- and
-free, sequents (a se-
quent 〈φ1, . . . , φn〉 is thought of as the formula φ1�. . .�φn).

However, the question whether the unrestricted logic corresponding to Blass’s
semantics (or, at least, the full propositional fragment of it) is decidable, recur-
sively enumerable or even arithmetical, has not been answered so far.

Both fragments above coincide with the corresponding fragments of our logic
of effective truth, and most likely this holds for the whole logic, too.

10

Together with the similarity between the two semantics, related with essen-
tially identical treatments of logical connectives as operations on games, there
are considerable differences between Blass’s and our approaches and, especially,
the consequences of these approaches:

1. Our games are finite (every play has a finite length, that is), whereas
Blass’s games are infinite and this fact plays a crucial role in all partial complete-
ness proofs in [2].4 This infiniteness makes things only second-order definable
while all the theory of our games of bounded depth, including the completeness
proof for the logic of effective truth, can be formalized in Peano Arithmetic.

2. At the same time, Blass’s semantics does not require that Proponent’s
strategies be effective, while that requirement is the spirit of all our approach
and its “constructivistic” effect is for us the main philosophical and practical
motivation for introducing a nonclassical semantics.

3. The finiteness of our plays makes definitions simpler and more natural.
E.g., a play is assumed to be lost by the player who has to move in the last
position of the play, so we do not need a special parameter indicating which
plays are won by which player in a game.

4. The notion of effective truth is only a strengthening of the classical notion
of truth, and it is based on the traditional models for traditional languages. E.g.,
the standard model of arithmetic now becomes the unique game-semantical
model where each atomic sentence α is a terminal position, with Opponent’s
obligation to move (which is though impossible to do), if α is true in the standard
model, and Proponent’s obligation to move otherwise. The set of effectively
true arithmetical sentences is a proper subset of the set of those true in the
classical sense.5 As for Blass’s approach, it hardly allows to speak about truth
in the standard model of arithmetic, for, in order to maintain the difference
between classical and game-semantical truth, atoms need to be interpreted as
infinite games there, and then it is not clear what game should be a natural
interpretation of, say, a+ b = c.

Abramsky and Jagadeesan [1] revised Blass’s game semantics by modifying
game rules, and investigated the multiplicative fragment of the corresponding
logic, which does not validate weakening any more and is thus closer to the
original Girard’s linear logic, being still stronger than the latter. This fragment
is shown to be decidable, though the question on decidability of the whole logic,
as well as of its full propositional fragment, remains open.

4E.g., the proof of nonvalidity of α ∨ ¬α in [2] uses a counterexample where α is an
undetermined game, i.e. a game where none of the players has a winning strategy, and such
a proof fails as soon as α is interpreted as a finite game because finite games are always
determined when noneffective strategies are allowed.

5E.g., if α is a Π0
3 arithmetical sentence which asserts its own not being effectively true,

then α∨¬α is true but not effectively true. Indeed, if we suppose that this additive disjunction
is effectively true, a little analysis of our treatment of ∨ shows that then either α or ¬α should
be effectively true. A further analysis of the situation reveals that in both cases we would
then get an effectively true sentence which is classically false.

11

2 Basic notions and facts on games

Definition 2.1 A net of games is a triple N = 〈W, l,R〉, where:
• W is a nonempty, countable, decidable set, the elements of which are
called positions of N .

• l is an effective function W → {0, 1}, called the labeling function; for an
element w of W , the value of l(w) is called the label of w. Intuitively,
l(w) = 0 means that Proponent has to move and l(w) = 1 means that
Opponent has to move.

• R is a decidable binary relation, called the development relation, on W
such that the converse of R is well-founded, i.e. there is no infinite chain
w0Rw1Rw2 . . . of positions. Intuitively, wRu means that the transfer from
the position w to the position u is a legal move. In this case u is called a
development of w (in N). R(w) usually denotes the set of all developments
of w.

Terminology 2.2 Let N = 〈W, l,R〉 be a net of games.
1. By a legal N -sequence we will mean any sequence of positions of N such

that each n + 1–th term of the sequence (if it exists) is a development of the
n–th term. Thus, the converse well-foundedness of R means nothing but that
each legal N -sequence is finite.

2. Let w, u ∈ W . We say that u is an rt-development of w (in N), if the
reflexive and transitive closure of R holds between w and u.

For e ∈ {0, 1}, we say that u is an rt-e-development of w, if there is a legal
N -sequence v0, . . . , vn (n ≥ 0) of positions such that v0 = w, vn = u and for
each i with 0 ≤ i < n, vi has the label e.

Thus, rt-e-development is a special case of rt-development.
3. As label 0 means Proponent’s move and label 1 means Opponent’s move,

we will use the terms 0-Player and 1-Player as synonyms of Proponent and
Opponent, respectively.

Definition 2.3 A game is a quadruple G = 〈W, l,R, s〉, where N = 〈W, l,R〉 is
a net of games and s is an element of W . Usually, if N denotes a net 〈W, l,R〉
of games and s ∈ W , we use N(s) to denote the game 〈W, l,R, s〉. “A position
of N(s)” and “a position of N” are synonyms, and s is said to be the starting
position of N(s).

By a legal G-sequence we then mean any legal N -sequence whose first term
is s.

Convention 2.4 It is not a “legal move” to speak about a function without
specifying its type, as this is often done in this paper (e.g., Definitions 2.5, 2.8,
2.9). However, sometimes the type of a function really does not matter or can
be seen from the context, and it would be awkward to still indicate, in each

12

such case, a range and a domain for a function purely out of reasons of a correct
style.

In order to avoid possible confusion caused by our irresponsible usage of the
notion of function, let us fix a “large enough” universe U ; namely, we assume
that the set of positions of any game we consider is included in U ; for safety we
can suppose that all natural numbers (and maybe many other things) are in U .
Then

• by a function, if not specified otherwise, we will always mean a partial
function of the type U → U ;

• by a finite function we will mean a function (in the above sense) defined
only for a finite number of arguments.

Definition 2.5 Let G = 〈W, l,R, s〉 be a game and f0 and f1 be functions.

1. The G-play with Proponent’s strategy f0 and Opponent’s strategy f1 is a
sequence P of positions of N which we construct in the following way:

a) The first position of P is s.

b) Suppose the first n positions of P are w1, . . . , wn, and e is the label of
wn. Then:

• if fe is defined for wn and fe(wn) = u for some u with wnRu, then
the n+ 1-th position of P is u;

• otherwise wn is the last position of P .

Notice that P is a legal G-sequence and thus P is finite.

2. A G-play is the G-play with Proponent’s strategy f and Opponent’s strat-
egy g for some functions f and g.

Observe that a G-play is nothing but a legal G-sequence.

3. A G-play with e-Player’s strategy f (where e ∈ {0, 1}, see 2.2.3) is the
G-play with e-Player’s strategy f and (1− e)-Player’s strategy g for some
function g.

In other words, a G-play with e-Player’s strategy f is a legal G-sequence
〈w1(= s), . . . , wn〉 such that for any 1 ≤ i ≤ n with l(wi) = e, we have:

• if f(wi) = u for some u ∈ R(wi), then i < n and wi+1 = u;

• otherwise i = n.

Definition 2.6 The depth of a game N(s) = 〈W, l,R, s〉 is the least ordinal
number α such that for every w with sRw, α > the depth of N(w). Thus, if
s has no developments, the depth of N(s) is 0.

Very roughly, the depth of a game G is the maximal possible length of a
G-play.

13

Definition 2.7 Suppose G is a game, P is a G-play, w is the last position of
P and e is the label of w. Then we say that P is lost by e-Player and won by
(1 − e)-Player.

Simply the words “won” and “lost”, without specifying the player, will al-
ways mean “won by Proponent” and “lost by Proponent”.

Thus, every play is either won or lost. Intuitively, a play is won if a position
(the last position) is reached where Opponent has to move (as the label of
that position is 1) but cannot, and in a lost play we have the dual situation:
Proponent has to move but cannot.

Definition 2.8 Let G be a game.

• A solution to G (Proponent’s winning strategy for G) is a function f such
that every G-play with Proponent’s strategy f is won.

• Dually, an antisolution to G (Opponent’s winning strategy for G) is a
function g such that every G-play with Opponent’s strategy g is lost.

Taking into account that the development relation is converse well founded,
the following fact 2.9 can be considered as a correct alternative definition of the
notion of solution; the form of this definition suggests that the relation “. . . is a
solution to . . . ” applied later to formulas interpreted as games, belongs to the
family of relations of the type “. . . realizes . . . ” which lead to diverse well-known
concepts of realizability (see [8]).

Fact 2.9 (Another definition of the notion of solution) A function f is a solu-
tion to a game N(s) = 〈W, l,R, s〉 iff the following holds:

• a) if l(s) = 1, then for all w ∈ R(s), f is a solution to the game N(w);

• b) if l(s) = 0, then f(s) = w for some position w such that w ∈ R(s) and
f is a solution to the game N(w).

Proving that the above two definitions of solution are equivalent would be an
easy warming-up exercise for the reader.

Fact 2.10 A function f is a solution to a game G if and only if for any finite
function (see Convention 2.4) g, the G-play with Proponent’s strategy f and
Opponent’s strategy g is won.

PROOF. Taking 2.8 as the basic definition of solution, the “only if” direction
is trivial. For the “if” direction, suppose f is not a solution to G, i.e. there is a
function h such that the G-play P with Proponent’s strategy f and Opponent’s
strategy h is lost. Let then g be the function which coincides with h for the
positions that participate in P and is undefined for any other object. Clearly the
G-play with Proponent’s strategy f and Opponent’s strategy g is the selfsame
P . On the other hand, since P (as well as any legal G-sequence) is finite,
the function g is finite. Thus, g is a finite function such that the G-play with
Proponent’s strategy f and Opponent’s strategy g is lost. ♣

14

Definition 2.11

• A game is said to be solvable, if it has a solution.

• A game is said to be effectively solvable, if it has an effective (recursive)
solution.

A solution, defined in 2.8, is a function of current position and it does not
see previous moves (the history of the play). However, in some situations it is
more convenient to deal with a strategy which scans the whole initial segment
of the play rather than the last position. Such strategies will be called “history-
sensitive”.

Definition 2.12 Let G = 〈W, l,R, s〉 be a game and f be a function. A G-play
with Proponent’s history-sensitive strategy f is a legal G-sequence 〈w1, . . . , wn〉
such that for every i ≤ n with l(wi) = 0 we have:

• if f 〈w1, . . . , wi〉 = u and wiRu, then i < n and wi+1 = u;

• otherwise i = n.

Definition 2.13 A history-sensitive solution to a game G is a function f such
that any G-play with Proponent’s history-sensitive strategy f is won.

Theorem 2.14

1. A game has a solution iff it has a history-sensitive solution.

2. A game has has an effective solution iff it has an effective history-sensitive
solution.

PROOF. We prove here only the clause 2 of the theorem. The proof of the
clause 1 is simpler.

Consider a game G = 〈W, l,R, s〉.
(⇒): Suppose f is an effective solution to G. Let g be the function defined

by g(〈w1, . . . , wn〉) = f(wn). Evidently g is then an effective history-sensitive
solution to G.

(⇐): Suppose g is an effective history-sensitive solution to G and Mg is a
machine that computes g.

• Let a good sequence mean a legal G-sequence 〈w1, . . . , wn〉 such that for
any 1 ≤ i < n, if l(wi) = 0, then g 〈w1, . . . , wi〉 = wi+1.

As W ,l,R and g are recursive, the good sequences can be recursively enumer-
ated. So, let us fix a recursive list of good sequences.

Let now f be a partial recursive function the value of which for an element
w of W is computed by the following machine Mf :

15

• First Mf checks (from the beginning) the list of good sequences till the
moment when a good sequence 〈t1, . . . , te〉 is found such that te = w. Then
Mf simulates the machine Mg with 〈t1, . . . , te〉 on the input of the latter;
if Mg halts and gives the output u for some u ∈ R(w), then Mf gives the
same output u.

The claim is that f is a solution to G. To show this, suppose, for a contra-
diction, that there is a lost G-play 〈w1, . . . , wn〉 with Proponent’s strategy f .
Let us first verify by induction on i that

for any 1 ≤ i ≤ n, there is a good sequence whose last term is wi. (1)

This is trivial for i = 1 because w1 = s and 〈s〉 is a good sequence. Suppose now
i > 1. Then, by the induction hypothesis, there is a good sequence 〈u1, . . . , um〉
with um = wi−1. If l(um) = 1, then obviously 〈u1, . . . , um, wi〉 is a good se-
quence. Suppose now that l(um) = 0, i.e. l(wi−1) = 0. Then, as 〈w1, . . . , wn〉
is a G-play with Proponent’s strategy f , we have wi = f(wi−1). According to
the definition of f , this means that for some good sequence 〈v1, . . . , vk〉 with
vk = wi−1, we have g(〈v1, . . . , vk〉) = wi. But then 〈v1, . . . , vk, wi〉 is a good
sequence, and (1) is proved.

Thus, by (1), there is a good sequence 〈t1, . . . , te〉 with te = wn. We may
suppose that 〈t1, . . . , te〉 is the first good sequence in the list of good sequences
whose last term is wn.

Observe that 〈t1, . . . , te〉 (as well as any good sequence) is an initial segment
of some G-play P with Proponent’s history-sensitive strategy g. Since l(te) = 0
and g is a history-sensitive solution to G, te cannot be the last position of
P , i.e. we must have g 〈t1, . . . , te〉 = r for some r ∈ R(te) = R(wn). But
then, by the definition of f , we have f(wn) = r ∈ R(wn), which contradicts our
assumption that wn is the last position of a G-play (namely of 〈w1, . . . , wn〉)
with Proponent’s strategy f : at least, the position r must follow wn in this play.
The theorem is proved. ♣
Lemma 2.15 Suppose N(s) = 〈W, l,R, s〉 is a game such that l(s) = 1 and for
each u ∈ R(s), N(u) is solvable. Then N(s) is solvable.

PROOF. For each u ∈ R(s), let us fix a solution gu to N(u). We define a
function f and show that it is a history-sensitive solution to N(s). By Theorem
2.14, that will mean that there is a solution to N(s). So, for any u ∈ R(s) and
v1, . . . , vn with v1 = u, n ≥ 1, let

f 〈s, v1, . . . , vn〉 = gu(vn).

AnyN(s)-play with Proponent’s history-sensitive strategy f looks like 〈s, v1, . . . ,-
vn〉, where, unless n = 0, we have v1 = u for some u ∈ R(s). Observe that if
such a play is lost, then (n �= 0 and) 〈v1, . . . , vn〉 is a lost N(u)-play with Pro-
ponent’s strategy gu. But this is impossible because gu is a solution to N(u).
♣

16

What follows is in fact a well known theorem which is due to Zermelo:

Theorem 2.16 To any game there is either a solution or an antisolution, i.e.
exactly one of the players has a winning strategy.

PROOF. Before we start proving, note that almost all the definitions and facts
on games enjoy perfect duality: we can always interchange “solution” and “an-
tisolution”, “Proponent” and “Opponent”, “0” and “1”, “won” and “lost”.

Fix a game N(s) = 〈W, l,R, s〉.
First observe that both players cannot have winning strategies for N(s), for

otherwise the play corresponding to these two strategies should be simultane-
ously won and lost, which is impossible.

Let h be the depth (see 2.6) of N(s). We may suppose that every w ∈ W is
an rt-development (see 2.2.2) of s, which means that the depth of N(w) for any
w with s �= w ∈ W is less than h.

By induction on depths ≤ h we are going to show that for an arbitrary
element w of W , one of the players has a winning strategy for N(w). Before
using induction, we consider four cases and show that in each of them one of
the players has a winning strategy.

Case 1: l(w) = 0 and there is u ∈ R(w) such that Proponent has a winning
strategy g for N(u).

Let then f(w) = u and for any w �= v ∈ W , f(v) = g(v). Since w can never
appear in an N(u)-play (because of the converse well-foundedness of R), it is
clear that f is a solution to N(u), whence, by 2.9, f is a solution to N(w).

Case 2: l(w) = 1 and there is u ∈ R(w) such that Opponent has a winning
strategy g for N(u).

Dual to the previous case: we can define an antisolution f to N(w).
Case 3: l(w) = 1 and for any u ∈ R(w) there is a solution to N(u).
Then, by Lemma 2.15, there is a solution to N(w).
Case 4: l(w) = 0 and for any u ∈ R(w) there is an antisolution to N(u).
Dual to the case 3, with the conclusion that there is an antisolution to N(w).
Now it remains to show that one of the above cases always takes place.

Indeed:
Suppose l(w) = 0 and the case 4 is “not the case”, i.e. there is u ∈ R(w)

such that N(u) has no antisolution. Since the depth of N(u) is less than the
depth of N(w), we can apply the induction hypothesis to N(u) and conclude
that Proponent has a winning strategy for N(u), i.e. we deal with the case 1.

Suppose now l(w) = 1 and the case 3 does not take place, i.e. there is
u ∈ R(w) such that N(u) has no solution. Then, by the induction hypothesis,
there is an antisolution to N(u), which means that we deal with the case 2. ♣

3 Sentences as games

Terminology and notation 3.1

17

1. By a “language” in this paper we mean a classical first order language
without functional or individual symbols supplemented with the two additional
binary connectives � and
.

More precisely, a language is determined (and thus can be identified with) a
countable set of predicate letters together with a function which assigns to each
predicate letter P a natural number n called the arity of P (and P is then said
to be n-ary).

Besides, the alphabet of each language consists of:

• Individual variables: v1, v2, v3, . . .; we use x, y, z . . . as metavariables for
them.

• Propositional connectives: ¬ (negation), ∨ (additive disjunction), ∧ (ad-
ditive conjunction), � (multiplicative disjunction),
 (multiplicative con-
junction).

• Quantifiers: ∃ (existential quantifier), ∀ (universal quantifier).

• Technical signs: , (comma), ((left parenthesis),) (right parenthesis).

2. Throughout the paper L denotes some fixed language.
3. We define the set of literals of L as the union of the sets of positive and

negative literals of L, defined as follows:

• α is a positive literal of L, if α = P (x1, . . . , xn), where P is an n-ary
predicate letter and x1, . . . , xn are variables (if n = 0, then P (x1, . . . , xn)
is just P).

• α is a negative literal of L, if α = ¬β for some positive literal β of L.

The word “atom” will be used as a synonym of “positive literal”.
4. Formulas of L are the elements of the smallest class FmL of expressions

such that, saying “α is a formula of L” for “α ∈ FmL”, we have:

• Literals of L are formulas of L.

• If α and β are formulas of L, then (α)∨ (β), (α)∧ (β), (α)�(β), (α)
 (β)
are formulas of L.

• If α is a formula of L and x is a variable, then ∃x(α) and ∀x(α) are
formulas of L.

We often omit some parentheses in formulas, when this does not lead to any
ambiguity.

5. Thus, in the formal language we prefer to restrict the scope of ¬ only
to atoms. However, we introduce ¬α for complex formulas as an abbreviation
defined as follows:

• ¬(¬α) =df α

18

• ¬(α ∨ β) =df ¬α ∧ ¬β
• ¬(α ∧ β) =df ¬α ∨ ¬β
• ¬(α�β) =df ¬α
 ¬β
• ¬(α
 β) =df ¬α�¬β
• ¬(∃xα) =df ∀x¬α
• ¬(∀xα) =df ∃x¬α.
6. Formulas α and ¬α are said to be opposite to each other.
7. We define a free occurrence of a variable x in a formula in the usual way:

this is an occurrence of x that is not in the scope of an occurrence of ∃x or ∀x.
8. We will often use the standard notational convention: a formula β can

be denoted by β(x1, . . . , xn), where x1, . . . , xn are any variables (not all of them
have to occur free in β and not all the free variables of β have to be among
them). Then β(t1, . . . , tn), where the ti’s are variables or any other terms (see
below), denotes the result of substituting t1, . . . , tn for all free occurrences of
x1, . . . , xn, respectively, in β.

9. A closed formula or a sentence is a formula without free occurrences of
variables.

10. Suppose D is a nonempty countable set (of “individuals”). A formula
of L with parameters in D is a pair 〈α, f〉, where α is a formula of L and f is a
(finite) function V ′ → D for some subset V ′ of the set V of free variables of α;
if V ′ = V , then we deal with a sentence of L with parameters in D.

We can think of sentences with parameters in D as formulas in which some
free variables are “substituted by elements of D”, and write, e.g., α(a1, . . . , an)
for 〈α(x1, . . . , xn), f〉, if f(x1) = a1, . . ., f(xn) = an.

11. We can use the words “literal” and “atom” for formulas (that is, literals
or atoms) with parameters, too. If such a literal is a sentence, then we call it a
sliteral.

Definition 3.2 A model for L is a triple M = 〈DM, -M,RM〉 such that:

• DM is a nonempty countable decidable set, called the domain of individ-
uals;

• -M is an effective total function of type {atomic sentences of L with pa-
rameters in DM} → {0, 1}, called the prelabeling function;

• RM is a decidable converse well-founded binary relation on {atomic sen-
tences of L with parameters in DM}, called the predevelopment relation.

Definition 3.3 A model M is said to be elementary, if the relation RM is
empty.

19

Definition 3.4 Let M be a model for L. We define

NM = 〈WM, lM, RM〉 ,

the net of games induced by M, as follows:

• WM is the set of all sentences of L with parameters in DM.

• 1. lM(α) = -M(α), if α is an atom;

2. lM(α ∨ β) = lM(∃xα) = 0;

3. lM(α ∧ β) = lM(∀xα) = 1;

4. lM(¬α) = 1 − lM(α);

5. lM(α�β) = max{lM(α), lM(β)};
6. lM(α
 β) = min{lM(α), lM(β)}.

• φRMψ iff one of the following holds:

1. φ, ψ are atoms and φRMψ;

2. φ = α ∗ β, where ∗ ∈ {∨,∧}, and ψ = α or ψ = β;

3. φ = ∗xα(x), where ∗ ∈ {∃, ∀}, and ψ = α(a) for some a ∈ DM ;

4. φ = ¬α, αRMα′ for some α′ and ψ = ¬α′;

5. φ = α ∗ β, where ∗ ∈ {�,
}, and:
– lM(α) = lM(φ), αRMα′ for some α′ and ψ = α′ ∗ β, or
– lM(β) = lM(φ), βRMβ′ for some β′ and ψ = α ∗ β′.

Now we can see how sentences are to be interpreted as games: given a model
M for L, each sentence α of L is understood as the game NM(α). This game
can be referred to as “the game corresponding to α”, or, simply, “the game α”
instead of NM(α).

The games of type NM(α) we call linguistic games.
The standard model of arithmetic defined below is an example of elementary

model.

There are many versions, equivalent in expressive power, of the language of
arithmetic. Here we choose one of them with infinitely many predicate letters:

Q0, Q1, Q2, . . .

In particular, let Def0, Def1, Def2, . . . be the enumeration, by increasing Gödel
numbers, of all primitive recursive definitions of relations. And let

R0, R1, R2, . . .

20

be the relations defined by Def0, Def1, Def2, . . ., respectively. Then, if n is
the arity of Rj , we associate the same arity n with the predicate letter Qj.
Each predicate letter Qi is interpreted as (“represents”) the relation Ri, as
this interpretation is set by the following definition of the standard model of
arithmetic:

Definition 3.5 The standard model of arithmetic, denoted by S throughout
this paper, is the following elementary model 〈DS , -S ,�〉:

DS is the set NAT = {0, 1, 2, . . .} of natural numbers;
for any i and any tuple a1, . . . , an of natural numbers, where n is the arity

of the predicate letter Qi, we have

-S
(
Qi(a1, . . . , an)

)
= 1 iff Ri(a1, . . . , an).

Convention 3.6 By abuse of notation, if R denotes an n-ary primitive recur-
sive relation in our metalanguage, we will use the same expression “R” in an
arithmetical formula, instead of a predicate letter Qi which represents R. Of
course, this practice induces ambiguity because R = Ri for infinitely many
i’s (that is, infinitely many Qi’s represent R). However, we can suppose that
for each relation R we deal with, we choose one fixed Qi representing R, and
everywhere in the text then “R” stands for this concrete Qi.

This convention allows us to use standard notations for standard primitive
recursive relations like “x < y”, “x+ y = z”, “2x = y” etc. without explaining
their meanings, as this is done in the example below; each such expression is
thought of as an atomic formula of the language of arithmetic. This allows
us to pretend that in the arithmetical language we have terms for primitive
recursive functions, and consider as formulas expressions like α(h(y, z)), when-
ever α(x) is a formula and h(y, z) is a function. Note that it is not the case
that α(h(y, z)) contains some predicate H for the graph of h and looks like,
say, ∃t(H(y, z, t) ∧ α(t)). Rather, α(x) and α(h(y, z)) have exactly the same
logical structure; α(h(y, z)) is simply the result of replacing in α(x) each atom
Qi(x, 2u), containing a free (in α) occurrence of x and representing some relation
R(x, 2u), by a (the) atom Qj(y, z, 2u), representing the relation R(h(y, z), 2u). So
R(x, 2u) and R(h(y, z), 2u) simply denote two different atoms of two different (in
this case) arities.

The sequence of the following arithmetical sentences with parameters in
NAT is a legal sequence of positions ofNS , in fact a won play (for an explanation
of the notation NS see Definition 3.4):

1.
(
0 = 1 ∨ ∀v1∃v2(v1 = v2)

)
 (∃v1∀v2(v1 + v2 = v2)�2 = 3
)

2. ∀v1∃v2(v1 = v2)
 (∃v1∀v2(v1 + v2 = v2)�2 = 3
)

3. ∀v1∃v2(v1 = v2)
 (∀v2(0 + v2 = v2)�2 = 3
)

21

4. ∃v2(124 = v2)
 (∀v2(0 + v2 = v2)�2 = 3
)

5. 124 = 124
 (∀v2(0 + v2 = v2)�2 = 3
)

6. 124 = 124
 (
0 + 18 = 18�2 = 3

)
.

Why did not we restrict our considerations to only elementary models, what
do we need the predevelopment relation for? In elementary models atoms are
interpreted as very specific games — games of depth 0, which are always trivially
solvable or antisolvable, whereas we need to be able to interpret atoms as any
possible games. Suffice it to say that otherwise the logic corresponding to our
semantics would not be closed under the substitution rule. E.g., when we deal
with elementary models, the game α ∨ ¬α is always effectively solvable for an
atomic α, but it may be effectively unsolvable for α = ∀x∃y∀zβ. Besides,
any net of games can be completely captured by our models (but hardly by
elementary models), and then the logical operators appear as operations on
games. E.g., one of the straightforward ways of “capturing” a net 〈W, l,R〉
is to interpret by its positions w0, w1, . . . the atomic sentences P0, P1, . . . (or
P (0), P (1),), defining the value of the prelabeling function for Pn to be
equal to l(wn) and stipulating that the predevelopment relation holds between
Pn and Pm iff wnRwm.

4 Truth and effective truth

Identifying � with ∨ and
 with ∧, we can think of L as a classical first order
language. A model in classical logic is understood as a pair M = 〈D,G〉, where
D is a nonempty set (domain of individuals) and G is a function which assigns
to each n-ary predicate letter P of the language an n-ary relation GP on D.
Then for a sentence α of L with parameters in D, the classical value of α in M,
denoted by CVM(α), is defined by the following induction on the complexity:

• for an atom P (a1, . . . , an), CVM(P (a1, . . . , an)) = 1, if GP (a1, . . . , an)
holds, and CVM(P (a1, . . . , an)) = 0 otherwise;

• CVM(¬α) = 1 − CVM(α);

• CVM(α ∨ β) = CVM(α�β) = max{(CVM
(
α
)
, CVM

(
β
)};

• CVM(α ∧ β) = CVM(α
 β) = min{CVM
(
α
)
, CVM

(
β
)};

• CVM
(∃xα(x)) = max{CVM

(
α(a)

)
: a ∈ D};

• CVM
(∀xα(x)) = min{CVM

(
α(a)

)
: a ∈ D}.

Definition 4.1 Let M be a model for L. The classical model Mcl = 〈D,G〉
induced by M is defined as follows:

22

• D = DM;

• for any n-ary predicate letter P and any a1, . . . , an ∈ D, we have

GP (a1, . . . , an) ⇔ (NM(P (a1, . . . , an)) is solvable).

It is easily seen that if M is an elementary model, Mcl is the classical model
induced by M and α is a sliteral (with parameters in DM), then CVMcl(α) =
-M(P (α)).

Theorem 4.2 Let M be a model for L, Mcl be the classical model induced by
M and φ be a sentence of L with parameters in DM. Then CVMcl(φ) = 1 iff
the game NM(φ) is solvable.

PROOF. (⇒:) Suppose CVMcl(φ) = 1 and show, by induction on the com-
plexity of φ, that NM(φ) is solvable.

Case 1: φ is an atom P (a1, . . . , an). CVMcl(φ) = 1 then means that
GP
Mcl(a1, . . . , an) holds, which, by 4.1, means that NM(φ) is solvable.

Case 2: φ = ¬α, where α is an atom. Then CVMcl(α) = 0 �= 1 and,
by the induction hypothesis, NM(α) is not solvable. Then, by 2.16, NM(α)
has an antisolution g. Let then f be such a function that for any sentence γ,
f(γ) = ¬g(¬γ) (we may suppose that g is defined for every sentence and its
value is always a sentence). Now, it is easy to verify that f is a solution to
NM(¬α), for, if γ1, . . . , γk is a lost NM(¬α)-play with Proponent’s strategy
f , then ¬γ1, . . . ,¬γk is a won (by Proponent) NM(α)-play with Opponent’s
strategy g, which is impossible because g is an antisolution to NM(α).

Case 3: φ = α1 ∨ α2. Then max{CVMcl(α1), CVMcl(α2)} = 1. We may
suppose that CVMcl(α1) = 1. Then, by the induction hypothesis, there is a
solution g to NM(α1). Let f(φ) = α1 and for any sentence γ �= φ, f(γ) = g(γ).
We claim that f is a solution to NM(φ). Indeed, suppose there is a lost NM(φ)-
play with Proponent’s strategy f . It will look like 〈φ, α1, 2γ〉 for some (possibly
empty) sequence 2γ of sentences. Observe that then 〈α1, 2γ〉 is a lost NM(α1)-
play with Proponent’s strategy g, which is impossible because, according to our
assumption, g is a solution to NM(α1).

Case 4: φ = α1 ∧ α2. Then CVMcl(α1) = CVMcl(α2) = 1 and, by the
induction hypothesis, both NM(α1) and NM(α2) are solvable. Now, since α1

and α2 are the only developments of φ, it follows by Lemma 2.15 that NM(φ)
is solvable.

Case 5: φ = α1�α2. Then max{CVMcl(α1), CVMcl(α2)} = 1. We may
suppose that CVMcl(α1) = 1. By the induction hypothesis, there is a solution
g to NM(α1).

Let f be such a function that for any sentence β1�β2, f(β1�β2) = g(β1)�β2.
Intuitively, to play an NM(α1�α2)-play with the strategy f , for Proponent,
means that he plays, using strategy g, only in the left component of the multi-
plicative disjunction and does nothing in the right component.

23

Suppose there is a lost NM(φ)-play

〈β1�γ1, . . . , βn�γn〉

(where β1�γ1 = α1�α2 = φ) with Proponent’s strategy f . Let k1 < . . . < km

be all the numbers k in the interval 1 < k ≤ n such that βk−1 �= βk. Intuitively,
k ∈ {k1, . . . , km} means that the position βk�γk has appeared as a result of
moving in the left component of the multiplicative disjunction; all the other
positions appear as a result of Opponent’s move in the right component and
they are not interesting for us. It is now easy to see that 〈α1, βk1 , . . . , βkm〉 is
a lost NM(α1)-play with Proponent’s strategy g, which is impossible because
g was Proponent’s winning strategy for NM(α1). Thus no NM(φ)-play with
Proponent’s strategy f can be lost, f is a solution to NM(φ).

Case 6: φ = α1
 α2. Then CVM(α1) = CVM(α2) = 1. By the induction
hypothesis, there are solutions g1 and g2 to NM(α1) and NM(α2), respectively.

Let f be such a function that for any sentence β1
 β2,

• f(β1
 β2) = g1(β1)
 β2, if lM(β1) = 0;

• f(β1
 β2) = β1
 g2(β2), if lM(β1) = 1.

Intuition: For Proponent, to follow strategy f in an NM(α1
 α2)-play means
to use the strategy g1 in the first component of the multiplicative conjunction
and the strategy g2 in the second component.

Suppose there is a lost NM(φ)-play

〈β1�γ1, . . . , βn�γn〉

(where β1
 γ1 = α1
 α2 = φ) with Proponent’s strategy f . As this play is
lost, the label of its last position βn
 γn is 0, i.e. one of the positions βn, γn

has the label 0. We may suppose that lM(βn) = 0. Let then k1 < . . . < km

be all the numbers k in the interval 1 < k ≤ n such that βk−1 �= βk. Thus,
k ∈ {k1, . . . , km} means that the position βk�γk has appeared as a result of
moving in the left component of the multiplicative conjunction. Now it remains
to verify, which can be easily done, that 〈α1, βk1 , . . . , βkm〉 is a lost NM(α1)-play
with Proponent’s strategy g1, which is impossible because g1 was Proponent’s
winning strategy for NM(α1). This contradiction proves that f is a solution to
NM(φ).

Case 7: φ = ∃xα(x). Similar to the case 3.
Case 8: φ = ∀xα(x). Similar to the case 4.
(⇐:) We have just shown that if CVMcl(φ) = 1, then there is a solution

to NM(φ). In a symmetric way we can show that if CVMcl(φ) = 0 (i.e.,
if CVMcl(φ) �= 1), then there is an antisolution to NM(φ), which rules out
solvability of NM(φ). ♣

24

Thus, identifying models with the classical models induced by them, solv-
ability and truth appear the same. The reader can easily verify (using 4.2) that,
e.g., the following holds:

Fact 4.3 An arithmetical sentence α is true in the classical sense (in the clas-
sical standard model of arithmetic) if and only if NS(α) is solvable.

Therefore it is safe and natural to use the word “true” for “solvable”, as this
usage is established in the first clause of the following definition:

Definition 4.4 Let α be a sentence of L and M be a model for L.

• α is said to be true in M, if the game NM(α) is solvable.

• α is said to be effectively true in M, if the game NM(α) is effectively
solvable.

5 Tautologies and effective tautologies

Having different notions of truth, we can define different notions of tautology:6

Definition 5.1 Let α be a sentence of L.

• α is said to be a tautology, if α is true in every model for L.

• α is said to be an effective tautology, if α is effectively true in every model
for L.

Theorem 5.4 below establishes that the usage of the traditional word “tautology”
here is safe, for the set of tautologies in our sense coincides with the set of
tautologies in the classical sense. In the third clause of that theorem is used
the notion of arithmetical instance of a formula of L, which, roughly, means the
result of substituting predicate letters of the formula by arithmetical formulas
of the same arity. Here is a more precise definition:

Definition 5.2 An arithmetical translation from a language L is a function τ
defined for some (not necessarily proper) subset S of the set of predicate letters
of L such that τ assigns to each n-ary predicate letter P ∈ S an arithmetical
formula τP = φ(x1, . . . , xn) (which may also contain parameters) with exactly
n free variables.

We say that a translation τ is good for a formula φ of L (φ may contain nat-
ural numbers as parameters), if τ is defined for all predicate letters occuring in
φ and, for any such letter P , τP does not contain quantifiers binding individual
variables occuring in φ.

6Many authors use “tautology” to refer to valid formulas of propositional logic only, but
for us ∀xP (x) → ∃xP (x) is a tautology, too.

25

“Translation for φ” means translation which is good for φ.
If τ is good for φ, we define the formula φτ by the following induction on

subformulas of φ:

• for an atomic α = P (t1, . . . , tn), where each ti is either a variable or a
parameter and where τP = β(x1, . . . , xn), we have ατ = β(t1, . . . , tn);

• (¬φ)τ = ¬(φτ), (φ ◦ψ)τ = φτ ◦ψτ , where ◦ ∈ {
,�,∨,∧}, and (Qxφ)τ =
Qx(φτ), where Q ∈ {∃, ∀}.

An arithmetical instance of φ is φτ for some translation τ for φ.

Let CL be the classical predicate logic in language L, where the two sorts
of disjunction and the two sorts of conjunction are understood as synonyms.

Remark 5.3 By a straightforward induction on the complexity of a formula β
one can show that if a translation τ is good for β, then β and βτ have exactly
the same free variables.

Theorem 5.4 For any sentence φ of L, the following are equivalent:

• (i) φ ∈ CL;

• (ii) φ is a tautology;

• (iii) any arithmetical instance of φ is true in the standard model of arith-
metic.

PROOF. (i)⇒(ii): Suppose φ is not a tautology, i.e. φ is not true in some
model M. Then, according to 4.2, the classical value of φ is 0 in the classical
model Mcl induced by M, whence, by Gödel’s completeness theorem for CL,
φ �∈ CL.

(ii)⇒(iii): This immediately follows from Lemma 9.2(a), proved later in
Section 9.

(iii)⇒(i): It is a well known fact that if φ �∈ CL, then there is an arith-
metical instance φ∗ of φ whose classical value in the classical standard model
of arithmetic is 0. This fact can be easily seen, say, by an analysis of Henkin’s
proof of Gödel’s completeness theorem for CL. And this, by 4.3, means nothing
but that φ∗ is not true (in our sense) in the standard model of arithmetic. ♣

The following Theorem 5.5, which is an analog of Theorem 5.4, is the main
result of the present work, and most of the rest of the paper is devoted to its
proof. The logic ET , mentioned below, is defined and shown to be decidable in
the next section.

Theorem 5.5 For any sentence φ of L, the following are equivalent:

• (i) φ ∈ ET ;

26

• (ii) φ is an effective tautology;

• (iii) any arithmetical instance of φ is effectively true in the standard
model of arithmetic.

6 Logic ET : syntactic description and decidabil-
ity

In this section and throughout the rest of the paper, if not stated otherwise,
“parameter” will always mean natural number and “sentence” or “sliteral” (see
3.1.11) will mean sentence or sliteral of L with parameters in NAT , the set of
natural numbers.

Terminology and notation 6.1
1. When speaking about a subformula (subsentence, literal) of a formula,

we are often interested in a concrete occurrence of this subformula rather than
the subformula as such (which may have several occurrences). Classical logic
does not care very much about distinction between subformulas and their oc-
currences, but we do. In order to stress that we mean a concrete occurrence, we
shall use the words osubformula, osubsentence, osliteral (“o” for “occurrence”).
E.g., if α is the first osliteral 0 = 0 of the formula 0 = 0�0 = 0, then the result
of substituting in the latter α by β is β�0 = 0; however, if α is the sliteral
0 = 0, then such a result is β�β.

2. A surface osubsentence of a sentence α is an osubsentence γ which is not
in the scope of ¬, ∨, ∧, ∃ or ∀. In this case we also say that γ has a surface
occurrence in α.

And we say that a sentence γ has a weak surface occurrence in α, if γ is not
in the scope of ∨, ∧, ∃ or ∀ (but it may be in the scope of ¬). Since only atoms
can be in the scope of ¬, any nonatomic sentence has a surface occurrence in α
if and only if it has a weak surface occurrence in α.

3. A multiplicative atom, or multiplicatively atomic sentence is a sentence
which is either a sliteral or has one of the forms α ∨ β, α ∧ β, ∃xα, ∀xα. In
other words, multiplicatively atomic is a sentence which is the only surface
osubsentence of itself.

4. Every formula is a multiplicative (�,
-) combination of its surface
osubformulas. E.g., the formula (α
β)�α is the combination “(−1
−2)�−3”
of α, β and α, or the combination “(−2
 −1)�−3” of β, α and α, or the com-
bination “−1�−2” of α
 β and α, or the combination “−1” of (α
 β)�α.
We shall usually use capital Latin letters for multiplicative combinations. Say,
if A is “(−2
 −1)�−3”, then A(β, α, α) means (α
 β)�α and A(α, β, α)
means (β
 α)�α. By using the sign “!” in an expression like A!(α1, . . . , αn),
we shall indicate that each αi is a multiplicative atom. Thus, the sentence
A!(α1, . . . , αn) contains exactly n multiplicatively atomic surface osubsentences,

27

whereas A(α1, . . . , αn) may contain more than n multiplicatively atomic osub-
sentences.

5. A hypersentence is a sentence φ together with a (possibly empty) set of
disjoint pairs (α0, α1) of opposite (recall 3.1.6) surface osliterals of φ; such pairs
will be called married couples (of the hypersentence), and α0 and α1 are said to
be spouses to each other. As these pairs are disjoint, every osliteral can have at
most one spouse. If an osliteral has a spouse, it is said to be married; otherwise
it is single.

6. A hypersentence is said to be clean, if there are no married couples in it.
Every sentence α will, at the same time, be understood as the corresponding
clean hypersentence denoted by the same letter α, and vice versa: every clean
hypersentence α will be identified with the sentence α.

Remark 6.2 In order to relax terminology and notation, it is convenient to
assume that the set of married couples is somehow graphically “built in” the
hyperformula: say, spouses are connected with curved lines. Then we can freely
use such terms as, “ the result of replacing in a hypersentence α the osubsentence
β by γ”, or “the result of replacing in α the parameter a by the parameter b”.
True, this “result” may not always remain a hypersentence: say, if a married
osliteral was replaced by another (different) sentence and its spouse was left
unchanged, then the new “spouses” will not be opposite any more. However,
there are at least two interesting us cases when replacement is safe:

1. When the replaced osubsentence does not contain a married osliteral;
2. When all occurrences of some parameter a in the hypersentence are

replaced by another parameter b. Clearly in this case married couples containing
a will remain opposite to each other, for a will be changed to b in both of them.

Definition 6.3 A hyperlabeling for a hypersentence α is a function l: {surface
osubsentences of α} → {0, 1} such that, calling the value of l for a sentence β
the hyperlabel of β, we have:

1. Spouses have different (opposite) hyperlabels;

2. Single osliterals have the hyperlabel 0;

3. l(α ∨ β) = l(∃xα) = 0;

4. l(α ∧ β) = l(∀xα) = 1;

5. l(α�β) = max{l(α), l(β)};
6. l(α
 β) = min{l(α), l(β)}.

Definition 6.4 A hypersentence α is said to be 1-like, if for any hyperlabeling
l, we have l(α) = 1; otherwise α is said to be 0-like.

Of course the question whether a hypersentence is 0- or 1-like is decidable.

28

Definition 6.5 A hypersentence β will be said to be a marriage-extension of
a hypersentence α, if α and β are identical as sentences and the set of married
couples of α is a proper subset of that of β.

Definition 6.6 Let α and β be hypersentences.

1. We say that β is a 1-hyperdevelopment of α iff one of the following holds:

• a) β is the result of replacing in α some surface osubsentence γ ∧ δ
by γ or δ, or

• b) β is the result of replacing in α some surface osubsentence ∀xγ(x)
by γ(a) for some parameter a.

To get the definition of strict 1-hyperdevelopment, we add to the clause
(b) the condition that a is the smallest parameter not occuring in α.

2. We say that β is a 0-hyperdevelopment of α iff one of the following holds:

• a) β is the result of replacing in α some surface osubsentence γ ∨ δ
by γ or δ, or

• b) β is the result of replacing in α some surface osubsentence ∃xγ(x)
by γ(a) for some parameter a, or

• c) β is a marriage-extension of α.

To get the definition of strict 0-hyperdevelopment, we add to the clause (b)
the condition that either a occurs in α, or α does not contain parameters
and a = 0.

3. Finally, we say that β is (simply) a hyperdevelopment (resp. strict hyper-
development) of α, if β is a 1- or 0-hyperdevelopment (resp. strict 1- or
0-hyperdevelopment) of α.

Lemma 6.7
a) There is no infinite chain α0, α1, . . . of hypersentences such that for any

i, αi+1 is a hyperdevelopment of αi; moreover, for any fixed α0, there is a finite
upper bound on the lengths of all such chains.

b) The set of all strict hyperdevelopments of any hypersentence α is finite.

PROOF. (a): In fact the length of each such chain is ≤ m+(n/2), where m is
the number of occurrences of ∨,∧, ∃, ∀ in α0 and n is the number of occurrences
of predicate letters in α0 except occurrences in married osliterals. It suffices to
observe that each transfer from αi to αi+1 (where αi+1 is a hyperdevelopment of
αi) means “spending” in αi either one of the occurrences of one of the operators
∨,∧, ∃, ∀ (this occurrence disappears in αi+1) or a pair of single osliterals (which
become married in αi+1).

(b): Evident.

29

Definition 6.8 The hypercomplexity of a hypersentence α1 is the length n of the
longest chain α1, . . . , αn of hypersentences such that for each i with 1 ≤ i < n,
αi+1 is a hyperdevelopment of αi.

So, if β is a hyperdevelopment of α, then the hypercomplexity of β is less
than that of α.

Definition 6.9 We now define the set ET of hypersentences by stipulating that
α ∈ ET iff one of the following holds:

1. α is 1-like and any 1-hyperdevelopment of it belongs to ET ;

2. α is 0-like and there is a 0-hyperdevelopment of it which belongs to ET .

The above definition is correct, because it defines α ∈ ET in terms of β ∈ ET
for those βs whose hypercomplexity is less than that of α.

Notation 6.10 α[a/b] denotes the result of replacing in α every occurrence of
the parameter a by b (see Remark 6.2).

Lemma 6.11 Suppose b is a parameter not occuring in a hypersentence α, and
a is any parameter. Then α ∈ ET iff α[a/b] ∈ ET .

PROOF. Indeed, if b does not occur in α, then α and α[a/b] are congruent
in the sense that the only difference between these two sentences is that the
first uses a and the second b instead. Therefore there is no reason why one
hypersentence should be in ET and the other not. ♣
Lemma 6.12 For any sentence α and any parameters a and b, if α ∈ ET , then
α[a/b] ∈ ET .

PROOF. Assume α ∈ ET . Let α be A!(γ0, γ1, . . . , γn). Then α[a/b] =
A!(γ0[a/b], γ1[a/b], . . . , γn[a/b]).

First note that
α is 0-like iff α[a/b] is 0-like. (2)

Indeed, suppose α is 0-like, i.e. for some hyperlabeling l for α, l(α) = 0. Let
l′ be the hyperlabeling for α[a/b] such that for any married osliteral γi[a/b] of
α[a/b], l′(γi[a/b]) = l(γi). Clearly l(α) = l′(α[a/b]) (= 0) and, consequently,
α[a/b] is 0-like. And in a similar way we can show that if α[a/b] is 0-like, then
so is α.

To prove the lemma, we proceed by induction on the hypercomplexity of α.

Case 1: α is 0-like. Then there is a 0-hyperdevelopment β ∈ ET of α. By the
induction hypothesis, β[a/b] ∈ ET . Since, by (2), α[a/b] is 0-like, it is enough
to show that β[a/b] is a 0-hyperdevelopment of α[a/b].

30

According to Definition 6.6.2, the fact that β is a 0-hyperdevelopment of α
means that one of the following three subcases takes place:

Subcase 1: β is the result of replacing in α some γi of the form ψ0 ∨ ψ1 by
ψj (j = 0, 1). We may suppose that i, j = 0. So, we have

α = A!(ψ0 ∨ ψ1, γ1, . . . , γn)

and
β = A!(ψ0, γ1, . . . , γn).

Therefore,

α[a/b] = A!(ψ0[a/b] ∨ ψ1[a/b], γ1[a/b], . . . , γn[a/b])

and
β[a/b] = A!(ψ0[a/b], γ1[a/b], . . . , γn[a/b]).

As we see, β[a/b] is then a 0-hyperdevelopment of α[a/b].
Subcase 2: β is the result of replacing in α some γi of the form ∃xψ(x) by

ψ(c) for some parameter c. We may suppose that i = 0. So, we have

α = A!(∃xψ(x), γ1, . . . , γn)

and
β = A!(ψ(c), γ1, . . . , γn).

Denote the formula ψ(x)[a/b] by φ(x). Then

α[a/b] = A!(∃xφ(x), γ1 [a/b], . . . , γn[a/b])

and, as it is easy to see,

β[a/b] = A!(φ(d), γ1[a/b], . . . , γn[a/b]),

where d = c, if c �= a, and d = b, if c = a. In either case, β[a/b] is a 0-hyper-
development of α[a/b].

Subcase 3: β is a marriage-extension of α. It is obvious that β[a/b] is then a
marriage-extension of α[a/b] and thus, β[a/b] is a 0-hyperdevelopment of α[a/b].

Case 2: α is 1-like. Then, by (2) (as being 1-like means nothing but not
being 0-like), α[a/b] is 1-like. Consider any 1-hyperdevelopment δ of α[a/b]. We
need to show that δ ∈ ET .

Subcase 1: δ is the result of replacing in α[a/b] some γi[a/b] of the form
ψ0 ∧ ψ1 by ψj . We may suppose that i, j = 0. It is clear that γ0 = ψ′

0 ∧ ψ′
1 for

some ψ′
0, ψ

′
1 such that ψ0 = ψ′

0[a/b] and ψ1 = ψ′
1[a/b]. Let

δ′ = [A!(ψ′
0, γ1, . . . , γn).

31

Then δ′ is a 1-hyperdevelopment of α. Notice that δ = δ′[a/b]. Since α ∈ ET ,
δ′ ∈ ET , whence, by the induction hypothesis, δ ∈ ET .

Subcase 2: δ is the result of replacing in α[a/b] some γi[a/b] of the form
∀xψ(x) by ψ(c) for some parameter c. We may suppose that i = 0. In view of
Lemma 6.11 (as ψ(x) does not contain a), we may suppose that c �= a. Then
γ0 = ∀xψ′(x) for some ψ′ such that ψ(x) = ψ′

i[a/b](x). Let

δ′ = A!(ψ′(c), γ1, . . . , γn).

Notice that δ′ is a 1-hyperdevelopment of α and δ = δ′[a/b]. Since α ∈ ET ,
δ′ ∈ ET , whence, by the induction hypothesis, δ ∈ ET .

Lemma 6.13 (Another definition of ET) For any hypersentence α, we have
α ∈ ET iff:

a) α is 1-like and any strict 1-hyperdevelopment of it belongs to ET , or
b) α is 0-like and there is a strict 0-hyperdevelopment of it which belongs to

ET .

PROOF. (a): Suppose α is 1-like. If α ∈ ET , then any 1-hyperdevelopment
of α is in ET and, — as a strict 1-hyperdevelopment is at the same time a
1-hyperdevelopment, — any strict 1-hyperdevelopment of α is in ET . Assume
now α �∈ ET . Then there is a 1-hyperdevelopment γ of α with γ �∈ ET . If γ is
at the same time a strict hyperdevelopment of α we are done. Otherwise, γ is
the result of replacing in α an osubsentence ∀xδ(x) by δ(a), for some parameter
a. Let b be the smallest parameter not occuring in α, and let γ′ be the result
of replacing in α the osubsentence ∀xδ(x) by δ(b). Note that γ′ is a strict 1-
hyperdevelopment of α. To show that γ′ �∈ ET , notice that γ = γ′[b/a] (the fact
that b does not occur in α and that therefore b occurs only in the osubsentence
δ(b) of the sentence γ is essential here), whence, as γ �∈ ET , 6.12 implies that
γ′ �∈ ET .

(b): Suppose α is 0-like. If α �∈ ET , then no 0-hyperdevelopment of α is in
ET and therefore there is no strict 0-hyperdevelopment of α in ET . Assume
now α ∈ ET . Then there is a 0-hyperdevelopment β of α with β ∈ ET . If β is
not at the same time a strict 0-hyperdevelopment of α, then β is the result of
replacing in α an osubsentence ∃xδ(x) by δ(a) for a not occuring in α. Let b be
any parameter occuring in α or, — if α does not contain parameters, let b be 0.
As it is easily seen, β[a/b] is the result of replacing in α the osubsentence ∃xδ(x)
by δ(b), which means — in view of our assumptions about b — that β[a/b] is a
0-hyperdevelopment of α. And, since β ∈ ET , 6.12 implies that β[a/b] ∈ ET .
♣
Theorem 6.14 ET is decidable. In fact, it is decidable in polynomial space.

PROOF. The decidability of ET immediately follows from Lemmas 6.13 and
6.7, and a straightforward analysis of the appropriate definitions and proofs

32

convinces us that a reasonable decision algorithm needs at most polynomial
space. ♣
Lemma 6.15

1. if α ∈ ET and β is a 1-hyperdevelopment of α, then β ∈ ET ;

2. if α �∈ ET and β is a 0-hyperdevelopment of α, then β �∈ ET .

PROOF. We consider only the first clause, the case when β is a 1-hyper-
development of α on the basis of 6.6.1a. The other cases (of both clauses) are
handled in a quite similar way. We use induction on the hypercomplexity of α.

Suppose α = A(δ1 ∧ δ2, 2ξ) ∈ ET and β = A(δi, 2ξ) (i ∈ {1, 2}).
If α is 1-like, then, by Definition 6.9, β ∈ ET .
Suppose now α is 0-like. A little analysis of Definition 6.3 (together with 6.4)

convinces us that then A(δi, 2ξ) is 0-like. According to 6.9.2, there is a 0-hyper-
development of α which belongs to ET . Observe that this 0-hyperdevelopment
has the form A(δ1∧δ2, 2ξ′) and A(δi, 2ξ′) is a 0-hyperdevelopment of A(δi, 2ξ). But,
by the induction hypothesis (as A(δ1 ∧ δ2, 2ξ′) ∈ ET), we have A(δi, 2ξ′) ∈ ET ,
which means that A(δi, 2ξ) ∈ ET . ♣

7 Relaxed linguistic games

As we require the domain of a model for L to be countable, we shall assume that
the domain DM of any model we consider is NAT . True, a finite model cannot
be isomorphic to a model with domain NAT . However, any finite model can be
viewed as a countably infinite model where we have infinitely many “copies” of
one of the elements of the domain. Therefore, the assumption that the domain
of every model is NAT in fact does not lead to any loss of generality.

As we agreed in the previous section, by a “sentence” we always mean a
sentence with parameters in NAT .

Throughout this section we assume that a model M for L is fixed.
I suggest to the reader to recall Definition 3.4 and our terminological con-

vention according to which we can identify a sentence α with the game NM(α).

Definition 7.1 We define N◦
M to be the net 〈WM, lM, R◦

M〉 of games, where
WM and lM are defined as in 3.4 and for any α, β ∈ W , we have αR◦

Mβ iff β
is the result of replacing in α a surface multiplicatively atomic osubsentence δ,
which has the same label as α, by a sentence δ′ such that δRMδ′.

Terminology and notation 7.2 In order to distinguish the two versions NM
and N◦

M of the net of games induced by M, from now on we call the former the
regular version and the latter the relaxed version. We also apply the adjectives
“regular” and “relaxed”, respectively, to the development relations RM and
R◦

M, the games NM(α) and N◦
M(α) or solutions to them, etc. However, we

33

may omit these adjectives in cases when it does not matter which version we
deal with, when the version can be seen from the context, or when we consider
a variable version.

Of course every regular development of α is, at the same time, a relaxed
development, but vice versa does not generally hold. E.g.,

∃x(x = x)
 (β(a)�∀y¬β(y)) (3)

is a relaxed, but not regular, development of

∃x(x = x)
 (∃yβ(y)�∀y¬β(y)), (4)

whatever the model is.
Intuitively, the difference between the regular and the relaxed versions of

linguistic games is that in relaxed games players may make “ahead-of-time”,
or “impatient” moves. The main task of this section is to establish that such
impatient moves of one player cannot affect the chance of the other player to win.
Moreover: the other player may even benefit by the impatience of his adversary.
Going back to the above example, in the position (4) it was Proponent’s move
because of the 0-labeled multiplicative conjunct ∃x(x = x); the other conjunct
was 1-labeled and he did not have (and was not allowed in the regular case)
to move in it. However, by going to the position (3), Proponent has made an
impatient move in the second conjunct of (4). This did not release him from
the duty to move in the first conjunct (one can show that a properly impatient
move never changes the label), so he still has to replace in (3) the osubsentence
∃x(x = x) by (b = b) for some b, which shows that Proponent did not benefit by
postponing this regular move; on the other hand, he missed the possibility to
use, in the second conjunct of (4), the strategy described in Introduction that
enabled a bad chess player to defeat the world champion in the game C�¬C.
It would be more clever of Proponent to go from the position (4) to

(b = b)
 (∃yβ(y)�∀y¬β(y)),
then wait until Opponent makes his move in ∀y¬β(y), and only after that make
a move in ∃yβ(y), choosing the same substitution for y as Opponent will have
chosen.

Definition 7.3 Let e ∈ {0, 1}. An e-trace from a sentence α to a sentence β is
a legal N◦

M-sequence γ1, . . . , γn with n ≥ 1 such that γ1 = α, γn = β and for
every 1 ≤ i < n (if n > 1), l(γi) = e; such a trace is said to be trivial, if n = 1;
otherwise the trace is nontrivial.

An e-tracing for a sentence β is a function t defined on some (sub)set
{β1, . . . , βn} of surface osubsentences of β which assigns to each βi an e-trace
(from some sentence) to βi. And an e-traced sentence (β, t) is a sentence β given
together with an e-tracing t for it.

34

A trace will usually serve as a piece of information on the history of a play
used by Proponent for making a successful next move.

Although Lemma 7.7 below is in good accordance with intuition, a rigorous
proof of it takes quite a space, and an “impatient” reader prone to trust us can
just memorize Lemma 7.7 and skip the rest of this section.

Definition 7.4 Let e = 0 or e = 1 and α = A!(α1, . . . , αn). Then an e-
expansion of α is a traced sentence (β, t), where β has the form A(β1, . . . , βn)
and t is an e-tracing for β which assigns, to each βi with 1 ≤ i ≤ n, a (possibly
trivial) e-trace from αi to βi.

Such an expansion is said to be pulling, if

• the label of α is e and

• there is 1 ≤ i ≤ n such that the trace tβi from αi to βi is nontrivial and,
for the second term σ of this trace, the sentence

A(α1, . . . , αi−1, σ, αi+1, . . . , αn)

is a regular development of α.

Then the osubsentence βi is said to be a pulling osubsentence of this expansion.

Intuitively, an e-expansion of α is a pair (β, t), where β is the result of a
series of “superimpatient” e-Player’s moves made in some surface components
of α, and t is a record of the history of these moves (“superimpatient”, because
this player does not even care whether it is his move in the whole position or
not). A pulling expansion contains a hint for a “patient” e-Player how to make
a move in α which would be really legal in a regular play and which would
take us closer to β (β “pulls” α towards itself). Namely, this move should be
a repetition of the first move made by the superimpatient e-Player in a pulling
component.

Although an expansion of α is a traced sentence, i.e. a sentence β together
with a tracing, in some contexts we identify it with just β.

Lemma 7.5 Suppose (β, t) is an e-expansion of α and β is e-labeled. Then α
is e-labeled, too.

PROOF. Let α, β and t be as in the definition of e-expansion. Notice that
then for each 1 ≤ i ≤ n, if βi is e-labeled, then so is αi. Then it follows easily
by Definition 3.4 that if β is e-labeled, then so is α. ♣

Lemma 7.6 Suppose α and β have the labels e and 1 − e, respectively, and
(β, t) is an e-expansion of α. Then (β, t) is a pulling e-expansion of α.

35

PROOF. We consider the case e = 0; the case e = 1 is symmetric. So,
assume the conditions of the lemma with e = 0. Let α = A!(α1, . . . , αn) and
β = A(β1, . . . , βn). We proceed by induction on the complexity of A, that
is, the “multiplicative complexity” of α. First of all note that as each αi is
multiplicatively atomic, any relaxed development of αi is, at the same time, a
regular development of αi. In view of this, the case when the sentence α is
multiplicatively atomic, is straightforward.

Suppose α = φ1�φ2. We may suppose that φ1 = A1!(α1, . . . , αm) and
φ2 = A2!(αm+1, . . . , αn) for some 1 ≤ m < n. Then β = ψ1�ψ2, where ψ1 =
A1(β1, . . . , βm) and ψ2 = A2(βm+1, . . . , βn). Let t1 and t2 be the restrictions
of t to {β1, . . . , βm} and {βm+1, . . . , βn}, respectively. Notice that (ψ1, t1) and
(ψ2, t2) are 0-expansions of φ1 and φ2, respectively. As α is 0-labeled, both its
multiplicative disjuncts are 0-labeled. And as β is 1-labeled, we may suppose
that ψ1 is 1-labeled. Thus, ψ1 is 1-labeled and (ψ1, t1) is a 0-expansion of the
0-labeled φ1. Then, by the induction hypothesis, this expansion is pulling, i.e.
there is 1 ≤ i ≤ m such that the trace t1βi (which = tβi) from αi to βi is not
trivial and for the second term σ of this trace, the sentence

A1(α1, . . . , αi−1, σ, αi+1, . . . , αm)

is a regular development of φ; but then, by Definition 3.4, the sentence

A1(α1, . . . , αi−1, σ, αi+1, . . . , αm)�φ2,

i.e. the sentence
A(α1, . . . , αi−1, σ, αi+1, . . . , αn),

is a regular development of α. This means that (β, t) is a pulling 0-expansion
of α.

The case α = φ1
 φ2 can be handled in a similar manner. ♣

Lemma 7.7 For any sentence φ of L,
a) NM(φ) is solvable iff N◦

M(φ) is;
b) NM(φ) is effectively solvable iff N◦

M(φ) is.

PROOF. We prove only the clause (b); the clause (a) is easier to prove.

(⇐):
Assume h is an effective solution to N◦

M(φ). By induction on the length of a
φ-play we simultaneously define Proponent’s effective history-sensitive strategy
f and another effective function g which assigns to every initial segment 2ξ =
ξ1, . . . , ξn of an NM(φ)-play with this strategy of Proponent’s a traced sentence
g2ξ; and we verify, at each step, that the following conditions are satisfied:

Condition 1. g2ξ is a 0-expansion of ξn.

36

Condition 2. h is a relaxed solution to g2ξ (see the paragraph preceding
7.5).

Here we go. We define g〈φ〉 to be φ, where every multiplicatively atomic
osubsentence has a trivial trace. Of course, both conditions 1 and 2 are satisfied
(for 〈φ〉 in the role of 〈2ξ〉).

Now, suppose 2ξ = ξ1, . . . , ξn is an initial segment of a φ-play with Pro-
ponent’s strategy f , g2ξ is defined and the conditions 1-2 are satisfied. Let
ξn = A!(α1, . . . , αk) and g2ξ be A(β1, . . . , βk) with relaxed 0-traces tr1, . . . , trk

from the osubsentences α1, . . . , αk to β1, . . . , βk, respectively.
Case 1: ξn is 1-labeled. Then f does not have to be defined for 2ξ and we only

need to define g for 〈2ξ, ξn+1〉, where ξn+1 is an arbitrary regular development of
ξn. A regular development is always, at the same time, a relaxed development,
so we have

ξn+1 = A(α1, . . . , αi−1, σ, αi+1, . . . , αk)

for some i, where σ is a development of the 1-labeled αi. That is, ξn+1 has the
form

B!(α1, . . . , αi−1, σ1, . . . , σm, αi+1, . . . , αk),

where σ1, . . . , σm are all surface multiplicatively atomic osubsentences of σ.
Then we define

g〈2ξ, ξn+1〉 = B(β1, . . . , βi−1, σ1, . . . , σm, βi+1, . . . , βk).

We want to make this sentence a traced one which would be a 0-expansion of
ξn+1. It is easily seen that this goal is achieved if we let each βj have the same
0-trace as it had in g2ξ, and every σj have a trivial trace. So, the condition 1 is
satisfied.

As there was a 0-trace from the 1-labeled αi to βi, this trace could only be
a trivial one, i.e. αi = βi. As ξn is 1-labeled, so is (by Lemma 7.5 and the
condition 1) g2ξ, which easily implies that g〈2ξ, ξn+1〉 is a relaxed development of
g2ξ and, as h is a relaxed solution to the latter, h must be a relaxed solution to
g〈2ξ, ξn+1〉 as well (see 2.9). Thus, the condition 2, too, is satisfied.

Case 2: ξn is 0-labeled. Then we need to define f for 2ξ and g for 〈2ξ, f2ξ〉. We
use the notation hx(η), defined by h0(η) = η and hx+1(η) = h(hx(η)). Let p be
the least number such that hp(g2ξ) is (defined and) 1-labeled. Such a p exists,
for, if the label of g2ξ, is 1, then p = 0 will do, and if this label is 0, then the
existence of p follows from the fact that h is a relaxed solution to g2ξ. By the
same reason,

h is a relaxed solution to hp(g2ξ). (5)

We have:

(g2ξ =) h0(g2ξ) = A(δ0
1 , . . . , δ

0
k) (= A(β1, . . . , βk))

37

h1(g2ξ) = A(δ1
1 , . . . , δ

1
k)

· · ·
hp(g2ξ) = A(δp

1 , . . . , δ
p
k)

For each 1 ≤ i ≤ k, let 2tr′i be the result of concatenating 2tri (see the
paragraph preceding Case 1) with 〈δ1

i , . . . , δ
p
i 〉 and then repeatedly deleting each

term δj
i equal to its left neighbor in the sequence.

Now, let ω be the traced sentence A(δp
1 , . . . , δ

p
k), with the trace 2tr′i for each

osubsentence δp
i . It is evident that ω, just like g2ξ, is a 0-expansion of ξn. And

as ω is 1-labeled, Lemma 7.6 gives that it is a pulling 0-expansion of ξn. Let
then δp

j be the leftmost pulling osubsentence of this expansion, and let σ be the

second term of the trace 2tr′j . Then we define

f2ξ = A(α1, . . . , αj−1, σ, αj+1, . . . , αk).

Note that
ω is a 0-expansion of f2ξ. (6)

As the second term σ of a 0-trace from αj is a relaxed development of αj and
as the latter is multiplicatively atomic, σ a regular development of it as well.
This means that f2ξ is a regular development of ξn.

And we define g〈2ξ, f2ξ〉 to be the traced sentence ω. According to 5 and 6,
the conditions 1 and 2 are then satisfied for 〈2ξ, f2ξ〉.

Thus, f , which evidently is effective, is defined for any initial segment 2ξ of a
NM(φ)-play with Proponent’s strategy f , as soon as the last sentence ξn of 2ξ is
0-labeled, and the value of f is then a regular development of ξn. This means
nothing but that f is an effective solution to NM(φ).

(⇒):
Assume h is an effective solution to NM(φ). By induction on the length of a

relaxed φ-play we simultaneously define Proponent’s effective history-sensitive
relaxed strategy f together with two other effective functions t and g, where
g assigns to every initial segment 2ξ = ξ1, . . . , ξn of an N◦

M(φ)-play with this
strategy of Proponent’s a sentence g2ξ, and t, applied to 2ξ, returns a tracing for
ξn (makes the sentence ξn traced), so that the following conditions are satisfied:

Condition 1. (ξn, t2ξ) is a 1-expansion of g2ξ.

Condition 2. h is a regular solution to g2ξ.

Here we go. We define g〈φ〉 to be φ and t〈φ〉 to be the tracing which assigns
the trivial trace to every surface osubsentence of φ. Evidently both conditions
1 and 2 are satisfied (for 〈φ〉 in the role of 〈2ξ〉).

38

Now, suppose 2ξ = ξ1, . . . , ξn is an initial segment of a relaxed φ-play with
Proponent’s strategy f , g and t are defined for 2ξ and the conditions 1-2 are
satisfied. Let g2ξ be A!(β1, . . . , βk), ξn be A(α1, . . . , αk) and 2tr1, . . . , 2trk be the
1-traces assigned to α1, . . . , αk by the tracing t2ξ.

Case 1: ξn is 1-labeled. Then f does not have to be defined for 2ξ and we
only need to define g and t for 〈2ξ, ξn+1〉, where ξn+1 is an arbitrary relaxed
development of ξn.

The value of g we leave unchanged: g〈2ξ, ξn+1〉 = g2ξ.
We have

ξn+1 = A(α1, . . . , αi−1, σ, αi+1, . . . , αk),

for some i, where σ is a relaxed development of the 1-labeled αi. Then we define
t〈2ξ, ξn+1〉 as the tracing that leaves unchanged the trace 2trj for each αj with
j �= i, and assigns the trace 〈 2tri, σ〉 to σ. Conditions 1 and 2 evidently remain
satisfied.

Case 2: ξn is 0-labeled. Then we need to define f for 2ξ and g and t for
〈2ξ, f2ξ〉. First we define the sequence ω0, . . . , ωp of sentences and the sequence
r0, . . . , rp of tracings for ξn as follows:

• ω0 = g2ξ and r0 = t2ξ. Note that, by the condition 1, (ξn, r0) is a 1-
expansion of ω0.

• Suppose now ωm and rm are defined, ωm has the form B!(η1, . . . , ηl) and
(ξn, rm), where ξn has the form B(ζ1, . . . , ζl), is a 1-expansion of ωm.
Then:

1. If ωm has the label 0, then p = m.

2. Suppose now ωm has the label 1. Then, by Lemma 7.6, (ξn, rm)
is a pulling 1-expansion of ωm, and let ζj be the leftmost pulling
osubsentence of this expansion. Let

σ = C!(σ1, . . . , σd)

be the second term of the trace assigned by rm to ζj . Then we define
ωm+1 to be

B(η1, . . . , ηj−1, σ, ηj+1, . . . , ηl),

whose !-form is

D!(η1, . . . , ηj−1, σ1, . . . , σd, ηj+1, . . . , ηl)

for a corresponding D.
The trace assigned by rm to ζj looks like

〈ηj , C(σ0
1 , . . . , σ

0
d), . . . , C(σb

1, . . . , σ
b
d)〉,

39

where C(σ0
1 , . . . , σ

0
d) = σ = C(σ1, . . . , σd) and C(σb

1, . . . , σ
b
d) = ζj .

So, ξn is D(ζ1, . . . , ζj−1, σ
b
1, . . . , σ

b
d, ζj+1, . . . , ζl. Now, we define rm+1

as follows: to each ζi with 1 ≤ i ≤ l, i �= j, rm+1 assigns the same
trace as assigned by rm, and to each σi (1 ≤ i ≤ d), rm+1 assigns the
trace which is the result of repeatedly deleting terms equal to their
left neighbors in the sequence 〈σi

0, . . . , σ
i
b〉.

It is not hard to verify that (ξn, rm+1) is a 1-expansion of ωm+1.

Notice that each ωm+1 is a regular development of ωm (recall what pulling
expansion means), and the number p, sooner or later, will be reached. ωp is a
regular rt-1-development (recall 2.2.2) of ω0 = g2ξ and, as h is a regular solution
to the latter (the condition 2), by 2.9, we have

h is a regular solution to ωp. (7)

And, as we noted above,

(ξn, rp) is a 1-expansion of ωp. (8)

ωp is 0-labeled and, as h is a regular solution to it, h must be defined for ωp

and its value must be a regular development of ωp. That is, we have:

ωp = G!(λ1, . . . , λc)

for some G and 2λ,
ξn = G(µ1, . . . , µc)

for some 2µ and (as every development is a relaxed development)

hωp = G(λ1, . . . , λi−1, σ, λi+1, . . . , λc)

for some σ. We then define

f2ξ = G(µ1, . . . , µi−1, σ, µi+1, . . . , µc).

Taking into account that λi is 0-labeled, which means that the 1-trace from λi

to µi determined by rp is a trivial one, i.e. λi = µi, it is clear that

f2ξ (is defined and) is a relaxed development of ξn. (9)

We define
g〈2ξ, f2ξ〉 = hωp.

And we define t〈2ξ, f2ξ〉 to be the tracing for f2ξ that assigns to each µj (1 ≤ j ≤ c,
j �= i) the same 1-trace to µj as rp, and assigns the trivial trace to σ. Then (8)
implies that the condition 1 is satisfied for 〈2ξ, f2ξ〉, and that the condition 2 is
satisfied follows from (7) by 2.9.

40

Thus, f , which evidently is effective, is defined for any initial segment 2ξ of
a N◦

M(ψ)-play with Proponent’s strategy f , as soon as the last sentence ξn of
2ξ is 0-labeled, and the value of f is then a relaxed development of ξn. This
means nothing but that f is an effective history-sensitive solution to N◦

M(ψ).
Therefore, by Theorem 2.14.2, N◦

M(ψ) is effectively solvable. Lemma 7.7 is
proved. ♣

8 Proof of Theorem 5.5(i)⇒(ii)

The definition of ET very much resembles our definition of (relaxed) games. 1-
hyperdevelopments correspond to Opponent’s moves and 0-hyperdevelopments
correspond to Proponent’s moves. An essential difference arises only when it
comes to atoms of the initial sentence: in real games a play may continue beyond
these atoms, which is not the case with “ET -games”; on the other hand, there
is nothing in real games directly corresponding to marriage-extension “moves”
in ET .

In this section we are going to show that if a sentence α is in ET , then,
in every model, Proponent has an effective winning strategy for α. Roughly,
Proponent acts as follows:

Whenever Opponent makes a move in α, Proponent finds the corresponding
1-hyperdevelopment α′ of α and treats it as a “counterpart” of current position.
To determine how to move now, Proponent finds a 0-hyperdevelopment α′′ ∈ ET
of α′ and tries to “copy” in the real play the “ET -move” corresponding to the
transfer from α′ to α′′, and so on. Of course this is not always possible. Namely,
if the above “ET -move” consists in going from a hypersentence to its marriage-
extension, it cannot be “copied”. However, marriage between osliterals γ and
δ is a signal for Proponent to try, from now on, to keep the counterparts (in
the real play) of γ and δ opposite to each other. So, if Opponent moves in the
counterpart of γ, Proponent tries to make a dual move in δ, and vice versa. As
long as Proponent succeeds in doing so, the label of a given position of the real
game is 1 whenever its counterpart is 1-like, and this is what ensures winning.

The precise definition of this strategy and the proof of its correctness below
are technically involved and pretty boring, so the reader not willing to fight
through them can pass on to the next section.

To sentences, hypersentences and many other objects we deal with, can be
assigned Gödel numbers. Then, when we say, e.g., “the smallest hypersentence
such that...”, we mean “smallest by its Gödel number”.

Terminology and notation 8.1 We define an operation X on hypersenten-
ces:

X(β) = β′, where β′ is the smallest marriage-extension of β such
that β′ ∈ ET ; if such a β′ does not exist, then X(β) = β.

41

Next, we define X0(β) = β and Xm+1(β) = X(Xm(β)). Clearly for any hyper-
sentence β there is m such that Xm(β) = Xm+1(β) = Xm+2(β) = . . . We then
call Xm(β) the X-closure of β. And we say that a sentence is X-closed, if it is
its own X-closure.

Note that

If β belongs to ET , then so does its X-closure. (10)

Now the proof begins. Assume M is a model for L and φ is sentence of
L such that φ ∈ ET . We will identify each sentence β of L with the corre-
sponding relaxed game N◦

M(β) (see 7.1). As we are going to deal only with
this relaxed game, the word “relaxed” will be omitted before “game”, “trace”,
“development”, “strategy”, etc.

By induction on the length of a φ-play we simultaneously define Proponent’s
effective history-sensitive strategy f together with two other effective functions
t and g, where g assigns to every initial segment 2ξ = ξ1, . . . , ξn of a φ-play with
this strategy of Proponent’s a hypersentence g2ξ, and t assigns to 2ξ a 1-tracing
(see 7.3) for ξn, so that the following conditions are satisfied:

Condition 1. g2ξ ∈ ET .

Condition 2. g2ξ is X-closed.

Condition 3. If ξn = A!(α1, . . . , αk), then g2ξ = A!(β1, . . . , βk), where:

1. If βi is not an osliteral, then αi = βi.

2. If βi is a 0-labeled single osliteral, then, again, αi = βi.

3. If βi is a 1-labeled single osliteral, then t2ξ assigns to αi a 1-trace from βi

to αi.

4. If βj0 and βj1 are spouses to each other, then t2ξ assigns to (at least) one
of the sentences αji , i ∈ {0, 1} a 1-trace from ¬α1−ji to αji .

Before we start defining these three functions, let us prove the following fact:

If the condition 3 holds for a hypersentence β in the role of g2ξ (11)
and β′ is an X-closure of β, then that condition holds for β′, too.

To see this, it is enough to consider the case when β′ is a marriage-extension
of β which contains just one additional married couple. That is, the only dif-
ference between β and β′ then is that for some 1 ≤ l,m ≤ k, βl and βm were
single osliterals in β and they are spouses to each other in β′. Therefore, the

42

conditions 3.1, 3.2 and 3.3 trivially continue to be satisfied for β′. So does the
condition 3.4 for any married couple different from (βl, βm). So, we only need
to verify that the condition 3.4 holds for the couple (βl, βm). As βl and βm are
opposite to each other, one of them — let it be βl — must have the lM-label
0, and then, by the condition 3.2 for β, αl = βl. According to the condition 3.3
for β, t2ξ assigns to αm a 1-trace from βm; thus, by the chain βm = ¬βl = ¬αl,
t2ξ assigns to αm a 1-trace from ¬αl, which means that the condition 3.4 is
satisfied. (11) is proved.

We define g〈φ〉 to be the X-closure of φ. And t〈φ〉 is the tracing that assigns
the trivial trace to each 1-labeled surface osliteral of φ. It is easy to see that
the conditions 1-3 are satisfied (for 〈φ〉 in the role of 〈2ξ〉). Now, suppose 〈2ξ〉 =
〈ξ1, . . . , ξn〉 is an initial segment of a φ-play with Proponent’s strategy f , the
functions g and t are defined for 2ξ and the conditions 1-3 are satisfied. According
to the condition 3, we have ξn = A!(α1, . . . , αk) and g2ξ = A!(β1, . . . , βk).

Case 1: ξn is 1-labeled. Then f does not need to be defined for 2ξ; we must
only define g and t for 〈2ξ, ξn+1〉, where ξn+1 is an arbitrary development of ξn.
We have

ξn+1 = A(α1, . . . , αi−1, σ, αi+1, . . . , αk)

for some 1 ≤ i ≤ k, where σ is a development of the 1-labeled αi. Then one of
the following three cases takes place:

Subcase 1a: αi is a sliteral. Then, by the condition 3.1, β1 is a sliteral,
too. We define g〈2ξ, ξn+1〉 = g2ξ, which guarantees that the conditions 1 and 2
remain to be satisfied. Now we need to define t for 〈2ξ, ξn+1〉 and verify that the
condition 3, too, is satisfied.

Subsubcase 1a(i): βi is single. Then, by the condition 3.3, t2ξ assigns to αi a
1-trace 2tr from βi to αi. Then we define t〈2ξ, ξn+1〉 to be the tracing that assigns
the trace 〈2tr, σ〉 to σ; to any other osliteral of ξn+1 this tracing assigns the same
trace as t2ξ. It is easy to see that then the condition 3 is satisfied.

Subsubcase 1a(ii): βi is married to some βj . If αi and αj are opposite, we
define t〈2ξ, ξn+1〉 to be the tracing that assigns the trace 〈αi, σ〉 to σ, is undefined
for αj and assigns to any other osliteral of ξn+1 the same trace as t2ξ. Suppose
now αi and αj are not opposite. Note that ¬αi is 0-labeled and therefore there
cannot exist a (nontrivial) trace from ¬αi to αj . Therefore, by the condition
3.4, t2ξ assigns to αi a 1-trace from ¬αj to αi. Then we define t〈2ξ, ξn+1〉 to be
the tracing that assigns the trace 〈2tr, σ〉 to σ and assigns the same trace as t2ξ
to any other osliteral of ξn+1 (namely, is undefined for αj). It is easily seen that
in this subsubcase, too, the condition 3 is satisfied.

Subcase 1b: αi = γ ∧ δ. Note that then, by the condition 3.1, βi = αi.
We may suppose that σ = γ. Then we define g〈2ξ, ξn+1〉 to be the X-closure
of A(β1, . . . , βi−1, σ, βi+1, . . . , βk). And t〈2ξ, ξn+1〉 is the tracing that assigns to
any surface osliteral αj (1 ≤ j ≤ k, j �= i) of ξn+1 the same trace as t2ξ,

43

and assigns a trivial trace to any other surface osliteral of ξn+1 (i.e. to those
that are surface osliterals of σ). The condition 1 follows now from (10) and
Lemma 6.15a, and the condition 2 is trivially satisfied; as for the condition 3, it
is evident for A(β1, . . . , βi−1, σ, βi+1, . . . , βk) in the role of g2ξ, whence, by (11),
it holds for its X-closure g〈2ξ, ξn+1〉.

Subcase 1c: αi = ∀xγ(x). This subcase is similar to the previous one.
Case 2: ξn is 0-labeled.
Subcase 2a: g2ξ is 0-like. Then, as g2ξ ∈ ET , there is a strict 0-hyperdevelop-

ment η ∈ ET of g2ξ (if there are many such hyperdevelopments, we suppose that
η is the smallest among them). Since g2ξ is X-closed, the relation between g2ξ
and η is determined by 6.6.2a or 6.6.2b. We consider only the case 6.6.2a; the
case 6.6.2b is similar. So, for some i, βi = γ ∨ δ and — we may suppose —

η = A(β1, . . . , βi−1, γ, βi+1, . . . , βk).

Then we define
f2ξ = A(α1, . . . , αi−1, γ, αi+1, . . . , αk).

We define g〈2ξ, f2ξ〉 to be the X-closure of η. And, t〈2ξ, f2ξ〉 is the tracing that
assigns to any surface osliteral αj (1 ≤ j ≤ k, j �= i) of f2ξ the same trace as
t2ξ, and to any other surface osliteral of f2ξ (i.e. those that are surface osliterals
of γ) assigns a trivial trace. As η ∈ ET and g〈2ξ, f2ξ〉 is an X-closure of η,
the condition 1 is satisfied (see (10)). The condition 2 holds trivially, and the
condition 3 is evident in view of (11).

Subcase 2b: g2ξ is 1-like.
Subsubcase 2b(i): Suppose there is a married couple (βl, βm) in g2ξ such that

t2ξ assigns to αl a nontrivial 1-trace ω1, . . . , ωp with p ≥ 2, ω1 = ¬αm, ωp = αl.
If there are many such couples, we suppose that (βl, βm) is the smallest among
them. Then we define

f2ξ = A(α1, . . . , αm−1,¬ω2, αm+1, . . . , αk).

Note that αm is 0-labeled and ¬ω2 is its development, so f2ξ is a development
of ξn. We define g〈2ξ, f2ξ〉 = g2ξ. As for the tracing t〈2ξ, ξn+1〉, it assigns the trace
ω2, . . . , ωp to αl and remains the same as t2ξ for any other osubsentence of f2ξ.
The conditions 1 and 2 trivially continue to hold for 〈2ξ, f2ξ〉, and the condition
3 is also easy to verify.

Subsubcase 2b(ii): If the married couple described in the subsubcase 2b(i)
does not exist, then f is undefined for 2ξ and g, t are undefined for 〈2ξ, ξn+1〉.

Thus, in every (sub)subcase of the case when ξn is 0-labeled, except 2b(ii),
f2ξ is defined and its value is a development of ξn. To conclude that f is a
solution to φ, it remains to show that the subsubcase 2b(ii) never takes place.

But indeed: suppose that the married couple described in 2b(i) does not
exist. Consider an arbitrary married couple (βl, βm) of g2ξ. According to the

44

condition 3.4, one of the osubsentences αl, αm of ξn — let it be αl — comes with
a 1-trace from ¬αm to αl. Consequently, this trace must be a trivial one, which
means that αl = ¬αm. Thus, for each married couple (βl, βm) of g2ξ, αl and αm

are opposite. Let then h be a hyperlabeling such that for any married osliteral
βe of g2ξ, h(βe) equals the label of αe. Then for every 1 ≤ e ≤ k, h(βe) ≤ the
label of αe, whence h(g2ξ) ≤ the label of ξn, which means that either ξn is not
0-labeled, or g2ξ is not 1-like, and this contradicts the conditions of the subcase
2b.

The part (i) ⇒ (ii) of Theorem 5.5 is proved. ♣

An analysis of the proof of 5.5(i)⇒(ii) (and the proofs of all the lemmas
employed in that proof) can convince us that in fact the following strong version
of the soundness of ET holds:

Theorem 8.2 There is an effective function which, for any model M for L
(where DM, -M,RM are given as Turing machines), returns an effective func-
tion (Turing machine) f which is a solution to any game NM(φ) with φ ∈ ET .

I wouldn’t like to waste the reader’s time on any more details or comments
on the proof of this theorem.

9 Proof of Theorem 5.5(ii)⇒(iii)

The part (ii)⇒(iii) of Theorem 5.5 immediately follows from the clause (b) of
Lemma 9.2. Before we start proving the latter, we need the following auxiliary
lemma:

Lemma 9.1 Suppose β(x) is a formula of L, $ is an arithmetical translation
good (see 5.2) for β(x), and (β(x))$ = γ(x). Then (β(a))$ = γ(a) for any
parameter a.

PROOF. Assume $ is good for β(x) and (β(x))$ = γ(x). According to 5.3,
x is free in β(x) iff it is free in γ(x). If x is not free in these formulas, then
β(x) = β(a), γ(x) = γ(a) and we are done. So, suppose x is free in β(x), γ(x).

We proceed by induction on the complexity of β(x).
Suppose β(x) is an atom P (x, y1, . . . , yn), all the variables of which are

explicitly indicated, and $P = δ(x0, . . . , xn). Then, by the definition of transla-
tion, (β(x))$ = δ(x, y1, . . . , yn) and (β(a))$ = δ(a, y1, . . . , yn). Since x is free in
γ(x) = δ(x, y1, . . . , yn), we have γ(a) = δ(a, y1, . . . , yn). Thus, (β(a))$ = γ(a).

The cases when β(x) is a complex formula are pretty straightforward, and we
consider only one of them. Suppose β(x) = ∀zδ(x, z). Then γ(x) = ∀zδ′(x, z),
where δ′(x, z) = (δ(x, z))$, whence, by the induction hypothesis, δ′(a, z) =
(δ(a, z))$, whence ∀zδ′(a, z) = ∀z((δ(a, z))$) = (∀zδ(a, z))$ = (β(a))$. But
∀zδ′(a, z) = γ(a). Thus, (β(a))$ = γ(a). ♣

45

Lemma 9.2 For any sentence φ of L and any arithmetical translation τ good
for φ, there is a model M with DM = NAT for L such that:

a) if NM(φ) is solvable, then so is NS(φτ);
b) if NM(φ) is effectively solvable, then so is NS(φτ).

(Recall that S is the standard model of arithmetic.)

PROOF. Taking Lemma 7.7 into account, we’ll deal only with relaxed plays,
and omit everywhere the word “relaxed”, as well as the superscript “◦”.

Let us fix a recursive list
α0, α1, . . .

of all arithmetical sentences and a recursive list

Q0, Q1, . . .

of zero place predicate letters of L not occuring in φ. Then, for any arithmetical
sentence β = αi, let Qβ denote the sliteral Qi.

Let τ be an arithmetical translation good for φ. We may suppose that each
predicate letter of L either occurs in φ, or is one of the Qi. We define a new
arithmetical translation $ as follows:

• For each predicate letter Qi from the above list, $Qi = αi;

• for any other predicate letter P , $P = τP .

Thus, every arithmetical sentence β is γ$ for some (at least one) sentence γ
of L. Note that the translation $ is good for φ.

We now define a model M for L: for any atomic sentences γ, δ of L,

• -M(γ) = lS(γ$);

• γRMδ iff δ = Qi for some i and γ$RSδ$.

A straightforward induction on the complexity of γ convinces us that

lM(γ) = lS(γ$) (all γ). (12)

Assume h is a solution to NM(φ). We define a Proponent’s history-sen-
sitive strategy f and a function g which assigns to every initial segment 2ξ =
〈ξ1, . . . , ξn〉 of an NS(φτ)-play with this strategy a sentence g2ξ of L such that
the following three conditions are satisfied:

Condition 1: h is a solution to NM(g2ξ).

Condition 2: ξn = (g2ξ)$.

Condition 3: $ is good for every surface osubsentence of g2ξ.

46

We define g〈φτ 〉 = φ. Thus, the condition 1 is satisfied. As φ does not
contain any of the atoms Q0, Q1, . . ., evidently φτ = φ$, so the condition 2, too,
is satisfied. And as $ is good for φ, it is good for each subsentence of it, which
means that the condition 3 is satisfied as well.

Suppose now 2ξ = 〈ξ1, . . . , ξn〉 is an initial segment of an NS(φ∗)-play, g2ξ is
defined and the conditions 1 and 2 are satisfied. In view of the condition 2, we
must have

g2ξ = A!(β1, . . . , βk)

and
ξn = A(β$

1 , . . . , β
$
k).

Case 1: ξn is 1-labeled (in the standard model of arithmetic). Note that,
by (12) and the condition 2, lM(g2ξ) = 1. This position obliges Opponent to
move, and we only need to define g for 〈2ξ, ξn+1〉, where ξn+1 is an arbitrary
development of ξn. ξn+1 must be the result of replacing in ξn a 1-labeled
osubsentence β$

i by an (arithmetical) development σ of it.
Subcase 1a: βi = γ∧δ. Then β$

i = γ$∧δ$. And we may suppose that σ = γ$.
Then we define g〈2ξ, ξn+1〉 to be the result of replacing in g2ξ the osubsentence βi

by γ. Of course ξn+1 = (g〈2ξ, ξn+1〉)$. Note also that g〈2ξ, ξn+1〉 is a development
of the 1-labeled g2ξ and, as h is a solution to the latter, it must be a solution to
g〈2ξ, ξn+1〉, too. Thus, the conditions 1 and 2 are satisfied. Since $ was good for
βi and γ is a subsentence of βi, $ remains good for γ. As no other osubsentences
of g2ξ have been changed, the condition 3, too, continues to hold.

Subcase 1b: βi = ∀xγ(x). Let δ(x) = (γ(x))$. Then β$
i = ∀xδ(x) and

σ = δ(a) for some parameter a. Since $ is good for γ(x), by Lemma 9.1,
δ(a), i.e. σ, is then equal to (γ(a))$. We define g〈2ξ, ξn+1〉 to be the result
of replacing in g2ξ the osubsentence βi by γ(a). Clearly (g〈2ξ, ξn+1〉)$ = ξn+1,
i.e. the condition 2 holds. And an argument similar to that from the previous
subcase can convince us that the conditions 1 and 3 hold as well.

Subcase 1c: βi is a sliteral. Then we define g〈2ξ, ξn+1〉 to be the result of
replacing in g2ξ the osubsentence βi by Qσ. Evidently ξn+1 = (g〈2ξ, ξn+1〉)$;
also, g〈2ξ, ξn+1〉 is a development of the 1-labeled g2ξ and, as h is a solution to
the latter, it must be a solution to g〈2ξ, ξn+1〉, too. Again, both conditions 1 and
2 are satisfied. Also, since Qσ does not contain any variables, $ is good for it
and this implies that the condition 3, too, is satisfied.

Case 2: ξn is 0-labeled. Then, by (12), so is g2ξ and, as h is a solution to the
latter, h(g2ξ) is a development of g2ξ and

h is a solution to h(g2ξ). (13)

h(g2ξ) must be the result of replacing in g2ξ a 0-labeled osubsentence βi by a
development σ of βi. Then we define f2ξ to be the result of replacing in ξn the

47

corresponding osubsentence β$
i by σ$. Of course,

f2ξ = (h(g2ξ))$. (14)

Note that, by (12), β$
i is 0-labeled. It is also easy to verify that σ$ is a develop-

ment of β$
i (if βi has the form ∃ . . ., we’ll need to use Lemma 9.1). Therefore,

f2ξ is a development of ξn. (15)

We define g〈2ξ, f2ξ〉 = h(g2ξ). According to (13) and (14), the conditions 1 and
2 are then satisfied for 〈2ξ, f2ξ〉 in the role of 2ξ. If βi is not a sliteral, then σ is
a subsentence of βi and therefore $ remains good for it. And if βi is a sliteral,
then so is σ and, as σ then does not contain variables, $ is good for it. This
implies that the condition 3 holds as well.

Thus, as soon as ξn is 0-labeled, f is defined for 2ξ and its value is a devel-
opment of ξn (by (15)). We conclude that f is a solution to φτ . The clause (a)
of the lemma is proved.

Finally, notice that f is primitive recursive relative to h, whence, if h is
effective, so is f . This proves the clause (b). ♣

10 Generalized modus ponens for effective truth

Lemma 10.1 Suppose A(α, 2β) and ¬α are effectively true in a model M. Then,
for any sentence γ, A(γ, 2β) is effectively true in M.7

PROOF. Fix a model M. We shall deal only with the relaxed net of games
induced by M, and omit the word “relaxed” everywhere.

Assume that h is an effective solution to A(α, 2β) and r is an effective solution
to ¬α.

The intuition behind Proponent’s strategy for A(γ, 2β) we are going to de-
fine can be described as follows: Proponent plays only in the component 2β of
A(γ, 2β). To determine what moves to make in this play, Proponent also plays an
“experimental” A(α, 2β)-play, where he uses the strategy h. He has an assistant
who is in the role of opponent in this play. The assistant uses the strategy r for
the component α and repeats Opponent’s moves, made in the component 2β of
the A(γ, 2β)-play, in the component 2β of the experimental play. Then, the strat-
egy h’s replies to these moves in the experimental play show Proponent how to
act in the component 2β of the A(γ, 2β)-play. The strategy r allows the assistant
to always make the component α 0-labeled, and this means that the strategy
h solves A(α, 2β) only at the expense of a successful play in the component 2β.

7To see why this lemma should be considered as generalized modus ponens, take A(α, β)
to be α�β and γ to be ⊥, identifying ⊥�β with β.

48

And as moves in this component are copied in the A(γ, 2β)-play, Proponent is
guaranteed to win in the latter.

The reader satisfied by this explanation can skip the rest of this section
which is devoted to a formal implementation of this intuition.

Let
2β = β1, . . . , βm.

Before we describe a solution to A(γ, 2β), we need some local terminology and
notation.

For a function s and argument B, s0(B) = B and sk+1(B) = s(sk(B)).
A sentence λ will be said to be interesting, if λ = A(δ0, δ1, . . . , δm) for

some δ0, . . . , δm such that h is a solution to λ and r is a solution to ¬δ0; the
osubsentence δ0 will be said to be the main osubsentence of λ. Thus, A(α, 2β) is
an interesting sentence and α is its main osubsentence.

The r-closure of such an interesting sentence λ is λ, if λ is 0-labeled, and is

A(¬rk(¬δ0), δ1 . . . , δm)

otherwise, where k is the least number such that rk(¬δ0) is 1-labeled.
Notice that the r-closure of λ exists (is correctly defined) because of the

assumption that r solves ¬δ0, and note also that the r-closure of λ continues to
be interesting.

And the h-closure of λ is hk(λ), where k is the least number such that hk(λ)
is 1-labeled or hk+1(λ) has the same main osubsentence as hk(λ). Note that the
h-closure of λ (is well defined and) continues to be interesting.

We say that λ is r- (resp. h-) closed, if its r- (resp. h-) closure is λ; and λ
is rh-closed, if it is both r- and h-closed.

Now, to get the sentence that we call the rh-closure of λ, we take the r-closure
of λ, then the h-closure of this r-closure, then the r-closure of this h-closure,
. . . , — until we reach an rh-closed sentence.

Since the operations of r- and h-closure preserve the property of being in-
teresting and they can change only the main osubsentence, we have:

The rh-closure of an interesting sentence A(δ0, δ1, . . . , δm) (16)
remains interesting and it is A(δ′0, δ1, . . . , δm) for some δ′0.

We simultaneously define Proponent’s effective history-sensitive strategy f
together with two other effective functions t and g, where g assigns to every ini-
tial segment 2ξ = ξ1, . . . , ξn of an A(γ, 2β)-play with this strategy of Proponent’s,
with ξn = A(δ0, . . . , δm), a sentence g2ξ = A(δ′0, . . . , δ

′
m), and t2ξ determines

traces for some surface osubsentences of ξn, so that the following conditions are
satisfied:

Condition 1. g2ξ is interesting.

49

Condition 2. g2ξ is rh-closed.

Condition 3. t2ξ assigns to each δi (1 ≤ i ≤ m) a 1-trace from δ′i to δi.

Here is the description of f , g and t; at each step of this definition we verify
that the above three conditions are satisfied.

We define g〈A(γ, 2β)〉 to be the rh-closure of A(α, 2β). And t〈A(γ, 2β)〉 is the
tracing that assigns the trivial trace to each osubsentence βi (1 ≤ i ≤ m). The
conditions 1-3 are evidently satisfied (for 〈A(γ, 2β)〉 in the role of 〈2ξ〉).

Now, suppose 〈2ξ〉 = 〈ξ1, . . . , ξn〉, where

ξn = A(δ0, . . . , δm),

is an initial segment of a A(γ, 2β)-play with Proponent’s strategy f , the functions
g and t are defined for 2ξ,

g2ξ = A(δ′0, . . . , δ
′
m)

and the conditions 1-3 are satisfied.
Case 1: ξn is 1-labeled. We must only define g and t for 〈2ξ, ξn+1〉, where

ξn+1 is an arbitrary development of ξn. We have

ξn+1 = A(δ0, . . . , δi−1, σ, δi+1, . . . , δm)

for some 0 ≤ i ≤ m, where σ is a development of the 1-labeled δi. Then we
define g〈2ξ, ξn+1〉 = g2ξ. And we define t〈2ξ, ξn+1〉 to be the tracing that assigns
to each δj with 1 ≤ i ≤ m, j �= i the same trace as t2ξ, and, if i �= 0, assigns
the trace 〈2tr, σ〉 to σ, where 2tr is the trace assigned to δi by t2ξ. The conditions
1 and 2 trivially continue to be satisfied, and evidently the condition 3, too,
remains to be satisfied.

Case 2: ξn is 0-labeled. We define the sequence ω0, . . . , ωp of sentences and
the sequence s0, . . . , sp of tracings for ξn as follows:

• ω0 = g2ξ and s0 = t2ξ. By our assumption, the conditions 1-3 are satisfied
for ω0 and s0 in the roles of g2ξ and t2ξ.

• Suppose now ωl and sl are defined, and the conditions 1-3 are satisfied for
ωl and sl in the roles of g2ξ and t2ξ. Then:

1. If ωl has the label 0, then p = m.

2. Suppose now ωl = A(θ0, . . . , θm) has the label 1. Note that, as ωl

is r-closed, its main osubsentence θ0 is 0-labeled. Therefore the only
reason for ωl’s being 1-labeled (whereas ξn is 0-labeled) can be that
for some 1 ≤ i ≤ m, θi is 1-labeled whereas δi is 0-labeled (if there
are many such i, we suppose that our i is the smallest among them).
This means that the 1-trace 〈η1, . . . , ηd〉 from θi to δi, assigned to δi

50

by sl, is not trivial (d ≥ 2). Then we define ωl+1 to be the rh-closure
of

A(θ0, . . . , θi−1, η2, θi+1, . . . , θm).

And we define sl+1 to be the tracing that assigns the trace 〈η2, . . . , ηd〉
to δi and assigns the same trace as sl to each osubsentence δj of ξn

with 1 ≤ j ≤ m, j �= i. It is not hard to verify that the conditions
1-3 are satisfied for ωl+1 and sl+1 in the roles of g2ξ and t2ξ.

Each ωm+1 is a development of ωm, so the number p will sooner or later be
reached. Thus,

ωp is 0-labeled and the conditions 1-3 are satisfied (17)

for ωp and sp in the roles of g2ξ and t2ξ.

Then, as h solves g2ξ (the condition 1), the value of h for ωp (is defined and)
is a development of ωp. Assume

ωp = A(ρ0, . . . , ρm).

The h-closedness of ωp implies that hωp is the result of replacing in ωp one of
the 0-labeled ρi, i �= 0, by a development σ of ρi. Then we define

f2ξ = A(δ0, . . . , δi−1, σ, δi+1, . . . , δm).

We also define g〈2ξ, f2ξ〉 as the rh-closure of hωp, and we define t〈2ξ, f2ξ〉 as the
tracing that assigns the trivial trace to σ and assigns the same trace as sp to
each δj with 1 ≤ j ≤ m, j �= i.

Note that as ρi is 0-labeled and there is a 1-trace from ρi to δi (determined
by sp), we have δi = ρi. Therefore f2ξ is a development of ξn.

It is easy to verify that hωp is interesting (taking into account that ωp is
so), whence, by (16), g〈2ξ, f2ξ〉 is interesting. That is, the condition 1 is satisfied
for 〈2ξ, f2ξ〉. The condition 2 is trivially satisfied because 〈2ξ, f2ξ〉 is an rh-closure,
and the condition 3 is also evident.

Thus, f is defined for 2ξ = 〈ξ1, . . . , ξn〉 as soon as ξn is 0-labeled, and f2ξ is
a (relaxed) development of ξn. This means that f is a history-sensitive relaxed
solution to A(γ, 2β), whence, by 2.14 and 7.7, A(γ, 2β) is effectively true in M. ♣

11 Arithmetization of the game semantics of arith-

metic

We shall use α → β to abbreviate ¬α∨β and ∃xx≤yα to abbreviate ∃x(x ≤ y∧α).
The meanings of the abbreviations ∃xx<y, ∀xx≤y, etc. should also be clear.

51

Definition 11.1
1. The set of ∆0-formulas is the smallest set of arithmetical formulas such

that:

• atomic formulas are ∆0-formulas;

• if α and β are ∆0-formulas, then ¬α, α ∨ β are ∆0-formulas;

• if α is a ∆0-formula and t is a term (see Convention 3.6) not containing
x, then ∃xx≤tα is a ∆0-formula.

2. “Σ0”-formula and “Π0”-formula are synonyms of “∆0”-formula, and for
n ≥ 1, we say that a formula α is a Σn- (resp. Πn-) formula, if α = ∃x1 . . . ∃xkβ
(resp. α = ∀x1 . . . ∃xkβ) for some Πn−1- (resp. Σn−1-) formula β and some,
possibly empty, sequence x1, . . . , xk of variables.

Note that, according to the above definition, every Σn- or Πn-formula is, at the
same time, a Σn+1- and a Πn+1-formula as well.

The meaning of the notion of Σn- (resp. Πn-, ∆0-) sentence must be clear:
this is the result of replacing each free variable in a Σn- (resp. Πn-, ∆0-) formula
by a natural number (see the beginning of Section 7).

The following fact does not require any comments:

Fact 11.2 Truth for ∆0 sentences is decidable.

This implies a more interesting fact:

Fact 11.3 There is an effective strategy DZERO which is a solution to any
true ∆0-sentence.

PROOF. Consider an arbitrary 0-labeled true ∆0-sentence δ. We define
DZERO(δ) as follows:

Case 1: δ = α1 ∨ α2. As δ is a true ∆0 sentence, so is at least one disjunct
αi of it, and this disjunct, in view of 11.2, can be determined in an effective
way. Then let DZERO(δ) = αi.

Case 2: δ = ∃xx≤tα(x). Again, in an effective way can be found b with b ≤ t
such that α(b) is a true ∆0-sentence. We then define DZERO(δ) = α(b).

Thus, DZERO is defined for any true 0-labeled ∆0-sentence δ and the value
of DZERO for δ is a development of δ which remains a true ∆0-sentence. This,
together with the observation that any development of a 1-labeled true ∆0-
sentence remains a true ∆0-sentence, implies that DZERO is a solution to any
true ∆0-sentence. ♣

Fact 11.4 There is an effective strategy UNIV which is a solution to any true
Π2-sentence.

52

PROOF. Consider an arbitrary true Π2-sentence π. It has the form

∀x1, . . . ,∀xm∃y1 . . .∃ynα(x1, . . . , xm, y1, . . . , yn),

(possibly m,n = 0) for some ∆0-formula α(2x, 2y). The first m moves in a π-play
are to be made by Opponent, and these moves lead to the true Σ1-sentence

σ = ∃y1 . . . ∃ynα(a1, . . . , αm, y1, . . . , yn)

for some a1, . . . , am. At this point Proponent starts checking, one after one, all
possible n-tuples of numbers until he reaches a tuple b1, . . . , bn such that the
∆0-sentence δ = α(a1, . . . , am, b1, . . . , bn) is true. Such a tuple exists because σ
is true, and this checking is effective according to 11.2. After the tuple is found,
Proponent makes n consecutive moves, each of which consists in the deleting
of “∃yi” and replacing “yi” by “bi”. The play comes to the sentence (position)
δ. Now Proponent can switch to the strategy DZERO which guarantees that
Proponent wins the play. ♣
Corollary 11.5 Every true Σ3-sentence is effectively true.

PROOF. Indeed, suppose σ is a true Σ3-sentence. We may suppose that σ is
not a Π2-sentence, for otherwise Proponent can use the strategy UNIV for it.
Then σ = ∃x1, . . . ,∃xnπ(x1, . . . , xn) for some Π2-formula π(2x) and some n ≥ 1,
and there is an n-tuple a1, . . . , an of numbers such that π(2a) is true. Proponent
starts the play by making n consecutive moves, consisting in deleting the “∃xi”
and replacing the “xi” by “ai”, and this ultimately leads to the position π(2a).
Now Proponent can switch to the strategy UNIV . This guarantees a win for
him. ♣

Definition 11.6 We say that an arithmetical formula α(x1, . . . , xn), with ex-
actly x1, . . . , xn free, represents (in the standard model) an n-place relation
A on natural numbers, if for any natural numbers a1, . . . , an, the relation
A(a1, . . . , an) holds if and only if α(a1, . . . , an) is true in the standard model.

It is well known that

Fact 11.7 Any decidable relation can be represented by a Σ1-formula.

As the negation of a decidable relation remains decidable, it is clear that
“Σ” can be replaced by “Π” above.

Let us fix some good coding of finite functions of the type NAT → NAT .
E.g., if such a function f is defined exactly for a1, . . . , an and its values for these
arguments are b1, . . . , bn, then let the code of f be a (the) standard code of the
sequence 〈(a1, b1), . . . , (an, bn)〉.

And we understand a partial recursive function f as a Turing machine, which
allows us to speak about the code of such a function. For a machine f and
a natural number i, we define a one-place function f≤i as follows: For any
argument n ∈ NAT ,

53

• if n ≤ i and for the input n the machine f halts within ≤ i steps and
outputs a natural number m, then f≤i(n) = m;

• otherwise f≤i is undefined for n.

Note that f≤i is a finite function. Note also that for any machine f and any
numbers n,m,

f(n) = m iff f≤i(n) = m for some i. (18)

Convention 11.8 Under the standard Gödel numbering, not every natural
number is the code of something. However, it is convenient to sometimes abuse
terminology and say “the x-coded sentence (formula, finite function, ...)”, as
this is done in the following “definition”:

FOO(x) is the function that returns the code of the negation of the
x-coded sentence.

In such a case we will mean that FOO returns 0, if x is not the code of a
sentence. Similarly, if FOO is defined as a predicate and the body of the
definition somewhere says “...the x-coded sentence...”, we suppose that FOO
returns “false” as soon as the argument x is not the code of a sentence.

We fix the following four arithmetical formulas:

• Won4(x, y, z, i) is a formula defining the following 4-place relation: “(the
x-coded sentence)-play with Proponent’s strategy (the y-coded machine)≤i

and Opponent’s strategy (the z-coded finite function) is won”.

As for any y and i the one-place functions (the y-coded machine)≤i(...) and (the
y-coded finite function)(...) are both finite and lS(...) and ...RS ... are decidable,
it is easy to see that the predicate Won4 is decidable. Therefore we suppose
that Won4(x, y, z, i) is a Σ1-formula.

• Won3(x, y, z) = ∃iWon4(x, y, z, i); Won3 is a Σ1-formula.

• Solves(y, x) = ∀zWon3(x, y, z); Solves is a Π2-formula.

• Eftrue(x) = ∃ySolves(y, x); Eftrue is a Σ3-formula.

In view of (18), it is evident that Won3(x, y, z) represents the 3-place predicate
“(the x-coded sentence)-play with Proponent’s strategy (the y-coded machine)
and Opponent’s strategy (the z-coded finite function) is won”.

And in view of 2.10, Solves(y, x) represents the predicate “(the y-coded
machine) is a solution to (the x-coded sentence)”.

Finally, Eftrue(x) clearly represents the predicate “(the x-coded sentence)
is effectively true in the standard model”.

Thus, the predicate of effective truth of an arithmetical sentence has the
complexity Σ3, which contrasts with the well-known nonarithmeticity of classical
truth.

54

Definition 11.9 Let α(x) be an arithmetical formula with only x free, and
h(y1, . . . , yn) be an n-ary primitive recursive function. We say that a Propo-
nent’s strategy f is stable for (α(x), h(y1, . . . , yn)), if for any numbers a, b1, . . . , bn

such that a = h(b1, . . . , bn), whenever f solves the sentence α(a), it also solves
the sentence α(h(b1, . . . , bn)) (recall 3.6).

Lemma 11.10 Let α(x) be an arithmetical formula with only x free, h(y1, . . . , yn)
be an n-ary primitive recursive function and f be a Proponent’s effective strat-
egy. Then f “can be made” stable for (α(x), f(y1, . . . , yn)). More precisely,
there is a Proponent’s effective strategy f ′ stable for (α(x), f(y1, . . . , yn)) such
that for any number a, f ′ solves α(a) whenever f does.

PROOF. Assume a = h(b1, . . . , bn). Here is an informal description of Pro-
ponent’s strategy f ′:

In a α(a)-play, f ′ acts exactly as f . In a α(h(b1, . . . , bn))-play, Proponent
pretends that he sees “a” instead of “h(b1, . . . , bn)”, and again acts exactly as he
would act in a α(a)-play following strategy f : chooses the same disjunct when he
sees an additive disjunction, chooses the same parameter when he sees an exis-
tential (osub)sentence, etc. Note that this is possible because the sentences α(a)
and α(h(b1, . . . , bn)) have exactly the same logical structure and they only differ
by their atoms (see the end of the second paragraph of 3.6); also, any atomic
sentence which emerges in this α(h(b1, . . . , bn))-play with strategy f ′ has the
same truth value (label) as the corresponding atom in the corresponding α(a)-
play with strategy f . Clearly then f ′ is an effective solution to α(h(b1, . . . , bn))
whenever f (and f ′) is so to α(a). ♣

12 Safe countertrees

Throughout this section “(hyper)sentence” means that of L.

Terminology and notation 12.1 By a tree we mean a set T of natural num-
bers, whose elements are called nodes of T , together with a binary relation ≺
on T such that:

• ≺ is transitive and irreflexive;

• if a ≺ c and b ≺ c, then either a ≺ b or b ≺ a or a = b (all a, b, c ∈ T);

• there is a node r ∈ T , called the root of T , such that r ≺ a for all r �= a ∈ T .

If there are no infinite or arbitrarily long ≺-chains in T , we say that T has a
finite height and call the length h of the longest (a longest) chain a1 ≺ . . . ≺ ah

the height of the tree.
a " b is defined as a ≺ b or a = b. If a " b (resp. a ≺ b), we say that a

is an ancestor (resp. proper ancestor) of b, and b is a descendant (resp. proper
descendant) of a.

55

If a ≺ b and there is no c with a ≺ c ≺ b, we say that a is the parent of b
and b is a child of a.

We say that a and b are siblings, if a and b have a common parent. A proper
sibling of a is any sibling of a except a itself.

A tree of sentences is a tree T with each node a of which is associated a
sentence â, called the content of a. We often identify nodes with their contents,
although it should be remembered that different nodes do not necessarily have
different contents.

Definition 12.2 A sentence is said to be safe, if no atom has two weak surface
occurrences in it (recall 6.1.2).

E.g., P (3)
 ¬P (2) is safe, but P (3)
 ¬P (3) is not.

Definition 12.3 A countertree for a sentence α is a tree T of sentences (which
are viewed as clean hypersentences, — see 6.1.6) with the root α such that for
any node β:

• if β is 1-like, then it has exactly one child, and this child is a 1-hyper-
development of β;

• if β is 0-like, then every clean 0-hyperdevelopment of β is a child of β and
every child of β is a clean 0-hyperdevelopment of β.

Such a tree is said to be safe, if every node of it is safe. And this tree is said
to be primitive recursive, if the relations “... is a node of T ”, “... is the content
of ...”, “... is the parent of ...”, “... is a sibling of ...” are primitive recursive.

Remark 12.4 Note that a child is always a hyperdevelopment of its parent
which, by 6.7a, implies that a countertree always has a finite height.

In the notion of translation defined in Section 5, instead of the language of
arithmetic can be taken any other language, including the language L whose
formulas are to be translated. Below we define a translation from L into L:

Definition 12.5 Let α be a sentence with a hypercomplexity n, and z1, . . . , z2n

be the first 2n variables (in the alphabetical list of variables) not occuring in α.
Then we define the plus-translation + for α by stipulating that for any m-ary
predicate letter P of α,

+P = ∀z1∃z2 . . . ∀z2n−1∃z2nP (x1, . . . , xm, z1, . . . , z2n).

(We assume here that if P is an m-ary predicate letter of L, then it is an m+2n-
ary predicate letter as well; if this seems confusing, we can choose any “safe”
(m+2n)-ary predicate letter P ′ instead of P in the right-hand side of the above
equation).

56

Lemma 12.6 If a sentence α does not belong to ET , then there is a safe prim-
itive recursive countertree for α+, where + is the plus-translation for α.

PROOF.8 Assume α �∈ ET . We simultaneously define a tree T of sentences
and a function which assigns to each node β of T a hypersentence β′ called the
image of β, such that the following two conditions are satisfied:

Condition 1. If β = A!(γ1, . . . , γk), then β′ = A!(δ1, . . . , δk), where for each
1 ≤ i ≤ k:

• a) if δi is not a sliteral, then γi = δ+
i ;

• b) if δi is a sliteral, then γi is an rt-development of δ+
i (see 2.2.2;

note that in which model we take an rt-development does not matter
here).

Condition 2. β′ �∈ ET .

Extending the usage of the word “image”, we also say that each δi in the
condition 1 above is the image of γi; if the image of γi is an osliteral, then we say
that γi is a quasiosliteral. We can say that a quasiosliteral is positive, negative,
single, or married, if its image is so, and that two quasiosliterals are spouses to
each other, if their images are so.

According to the condition 1b, every quasiosliteral with an image P (2a)
(where P (2a) is a positive or negative sliteral), is

Qi+1zi+1 . . . Q2nz2nP (2a, b1, . . . , bi, zi+1, . . . , z2n)

for some 0 ≤ i ≤ 2n and b1, . . . , bi (where the Qj are alternating quantifiers).
We call the number i the age of the quasiosliteral, and if i ≥ 2, we say that the
quasiosliteral is aged. And we call a parameter bj (1 ≤ j ≤ i) the zj-parameter
of the quasiosliteral.

We put α+ to be the root of T and α to be its image. Clearly the conditions
1 and 2 are satisfied.

Now, suppose β = A!(γ1, . . . , γk) is a node of T , β′ = A!(δ1, . . . , δk) is its
image and the conditions 1 and 2 are satisfied for β and β′. Below we define the
set of children of β and the images of these children; at the same time we verify
that β satisfies the conditions of Definition 12.3 and the children of β together
with their images satisfy the conditions 1 and 2. Here we go:

Case 1: Suppose β is 1-like and:
8This proof takes all the rest of this section. Reading it is not necessary for understanding

the material in the remaining sections.

57

Subcase 1a: β′ is 1-like. Then (as β′ �∈ ET) there is a 1-hyperdevelopment
φ′ �∈ ET of β′; if there is more than one such hyperdevelopment, we choose the
smallest one. We have

φ′ = A(δ1, . . . , δi−1, δ, δi+1, . . . , δk)

for some 1 ≤ i ≤ k, where δ is a (hyper)development of the ∧- or ∀-sentence δi.
Then, as it is easily seen, the formula

φ = A(γ1, . . . , γi−1, δ
+, γi+1, . . . , γk)

is a 1-hyperdevelopment of β. We set φ to be the only child of β and φ′ to be
its image. Note that the conditions 1 and 2 are satisfied for φ and φ′, and β
satisfies the conditions of Definition 12.3.

Subcase 1b: β′ is 0-like. Let then l be the smallest hyperlabeling for β′ such
that l(β′) = 0. It is easy to see that there is then a smallest 1 ≤ i ≤ k such
that δi is an osliteral with l(δi) = 0, and γi has the opposite hyperlabel (for any
hyperlabeling, because β is clean), which means — taking into account that γi

is a rt-development of δ+
i and the latter is a sliteral with a quantifier prefix —

that γi has the form ∀zjγ(zj) for some 1 ≤ j ≤ 2n. We then choose the least
parameter a not occuring in β and stipulate that

φ = A(γ1, . . . , γi−1, γ(a), γi+1, . . . , γk)

is the only child of β and the selfsame β′ is its image. Clearly the conditions 1
and 2 continue to hold for φ and β′, and β satisfies the conditions of Definition
12.3.

Case 2: Suppose β is 0-like. Then we stipulate that all clean 0-hyperdevelop-
ments of β, and only those, are children of β. Thus, β satisfies the conditions
of 12.3.

Consider any clean 0-hyperdevelopment (child) φ of β. We have

φ = A(γ1, . . . , γi−1, γ, γi+1, . . . , γk)

for some i, where γi is a ∨- or ∃-sentence and γ is its development. In order to
define the image φ′ of φ, we need to consider the following subcases:

Subcase 2a: γi is not a quasiosliteral. Then it is clear that there is δ such
that γ = δ+ and δ is a 0-hyperdevelopment of δi. Then we define

φ′ = A(δ1, . . . , δi−1, δ, δi+1, . . . , δk).

Subcase 2b: γi is a single quasiosliteral of age 1, and there is an (exactly one
single) aged quasiosliteral γj in φ such that δi and δj are opposite to each other
and γj and γ have the same z1- and z2-parameters. Then φ′ is the marriage-
extension of β′ by means of adding to the set of married couples of the latter
the couple (δi, δj).

58

Subcase 2c. In all the remaining cases we define φ′ = β′.

The condition 1, as it is easily seen, is satisfied for φ and φ′ in each of the
above subcases (a), (b) and (c); as β′ �∈ ET , the condition 2 is trivially satisfied
in the subcase (c), and it is also satisfied in the subcases (a) and (b) because φ′

is a 0-hyperdevelopment of β′ (see 6.15).

Since α is the root of T and, as we established above, every node β of T
satisfies the conditions of 12.3, T is a countertree for α. And it is evident that
this tree is primitive recursive. It remains to show that T is safe.

Suppose α = A!(α1, . . . , αk) is a node of T , αi is a quasiosliteral of α and
β is a descendant of α. The definition of countertree easily implies that then β
has the form A(β1, . . . , βk); we extend the usage of the words “ancestor” and
“descendant” to osubsentences of the nodes of T and say that αi (1 ≤ i ≤ k) is
an ancestor of βi and βi is a descendant of αi. In a similar way, we extend the
usage of the words “parent” and “child” to quasiosliterals.

An analysis of our step-by-step construction of T easily convinces as that
the following lemma holds for T :

Lemma 12.7
a) If a node α is a child of a node β and α′, β′ are the images of α, β,

respectively, then either α′ = β′ or α′ is a hyperdevelopment of β′.
b) If γ is a (surface) quasiosliteral of a node, then so are all its descendants,

and they all have the same image.
c) A surface osubsentence γ of a node is a quasiosliteral iff γ is Qizi . . .-

Q2nz2nδ for some literal δ and some 1 ≤ i ≤ 2n, where the Qj are alternating
quantifiers.

d) If two quasiosliterals of a node are spouses to each other, then so are
their descendants. (This follows from (a) and (b))

Lemma 12.8 Suppose β is a node of T and γ and δ are different positive (resp.
negative) aged quasiosliterals of β. Then the z1- (resp. z2-) parameters of γ and
δ are different.

PROOF. Taking 12.7c into account, one can verify that if γ and β are positive
(resp. negative) aged quasiosliterals, then the z1- (resp. z2-) parameters have
appeared in them — that is, in their ancestors — by the subcase 1b; but, on one
hand, a zi-parameter, once it has appeared, never disappears in the descendants,
and, on the other hand, the subcase 1b never introduces an already existing
parameter, so we conclude that the z1- (resp. z2-) parameters of γ and δ must
be different. ♣

59

Lemma 12.9 Suppose β is a node of T and γ and δ are quasiosliterals of β.
Then γ and δ are spouses to each other if and only if the following two conditions
are satisfied:

a) both γ and δ are aged;
b) γ has the same z1- and z2-parameters as δ.

PROOF. (⇒:) It is only the subcase 2b where marriages happen. In view of
12.7d and 12.7a, the conditions of the subcase 2b then immediately imply both
clauses (a) and (b) of the lemma.

(⇐:) We may suppose that γ became aged earlier than δ. More precisely,
for some β′, β′′, γ′, γ′′, δ′, δ′′ we have: β′, β′′ are ancestor nodes of β, β′′ is a
child of β′, γ′ and γ′′ are the ancestors of γ in β′ and β′′, respectively, and δ′

and δ′′ are the ancestors of δ in β′ and β′′, respectively; γ′ = γ′′ and they are
aged; δ′ is of age 1 and δ′′ is of age 2. By 12.7c, γ′, γ′′, δ′, δ′′ are quasiosliterals,
and by 12.7b, γ′, γ′′, γ have a common image and so do δ′, δ′′, δ. Note that
the subcases 1a and 2a never deal with quasiosliterals and the subcase 1b never
introduces an already existing parameter. Therefore, the transfer from β′ to
β′′ can only be determined either by the subcase 2b or by the subcase 2c. If
this is the subcase 2b, we are done, because that means that γ′′ and δ′′ marry
each other in β′′ and therefore, by 12.7d, γ and δ are spouses to each other. It
remains to show that the subcase 2c is ruled out, i.e. that the transfer from β′

to β′′ is really determined by the subcase 2b. Suppose not. Then an analysis of
the conditions of the subcase 2b shows that we should have one of the following:

i) There is a quasiosliteral ξ �= γ′ in β′ with the same z1- and z2-parameters
as δ′′ such that the image of ξ is opposite to the image of δ′, or

ii) Either γ′ or δ′ is married.
In the case (i), note that ξ and γ′ have the same z1- and z2-parameters and

equal images, which, by 12.8, is a contradiction.
Now, to rule out the case (ii), first notice that since δ′ is not aged, by 12.9a,

δ′ is not married. And if γ′ is married, then (the child of) its spouse has the
same (same as a sentence) image and (by 12.9b) the same z1- and z2-parameters
as δ′′, which, again by 12.8, is a contradiction. ♣

Let β be a node of T and (γ0, γ1) — a married couple of quasiosliterals of β.
Then we’ll say that this couple, as well as each γi, is spoiled (in β), if for some
m, one of the following holds:

a) both γi are of (not necessarily the same) age ≥ m and their zm-parameters
are different, or

b) γi is of age ≥ m, γ1−i of age < m and the variable zm in γ1−i is bound
by ∀.

Lemma 12.10 Let β be a node of T , δ a child of β and (γ0, γ1) a married
couple of quasiosliterals of β. Then, if this couple is spoiled in β, so is it (i.e.
the couple of the children of γ0,γ1) in δ.

60

PROOF. Indeed, if the reason of γ0 and γ1’s being spoiled in β is the clause
(a) of the definition of “spoiled”, then clearly the same reason will work in δ,
too. And if the reason for being spoiled in β is the clause (b) of the definition
of “spoiled”, then, again, the same reason remains in δ unless δ results from β
by deleting ∀zm in γ1−i and replacing the variable zm by a parameter a (this
can only happen in the subcase 1b of the definition of T). But then, according
to the conditions of the subcase 1b, this zm-parameter a is different from any
already existing parameter of β, including the zm-parameter of γi. This means
that the interesting us couple is spoiled in δ on the basis of the clause (a) of the
definition of “spoiled”. ♣
Lemma 12.11 Suppose β is a node of T and γ is a married quasiosliteral of
β whose first quantifier is ∀ and whose age is m. Suppose also that β′ is a
descendant of β and the descendant γ′ of the quasiosliteral γ in β′ is of age
m+ 2. Then β and β′ have different images unless γ′ is spoiled.

PROOF. For a contradiction, deny this. γ and γ′ must have the forms
∀zm+1∃zm+2ω(zm+1, zm+2) and ω(a, b), respectively. We must have nodes β1, β2

with β " β1 ≺ β2 ≺ β′, where β2 is a child of β1, such that, if we denote by
γ1 and γ2 the descendants of γ in β1 and β2, respectively, we have γ1 = γ =
∀zm+1∃zm+2ω(zm+1, zm+2) and γ2 = ∃zm+2ω(a, zm+2). Note that all the four
nodes: β, β1, β2, β

′ have the same image Iβ , and that, by 12.7c and 12.7b, all
the four osliterals γ, γ1, γ2, γ

′ are quasiosliterals with a common image Iγ . Note
also that the transfer from β1 to β2 can only be determined by the subcase 1b,
which means that Iβ is 0-like. Let then l be the smallest hyperlabeling with
l(Iβ) = 0. Let δ and δ′ be the spouses of γ and γ′, respectively. By 12.9a,
12.7c and 12.7b, these two osliterals are quasiosliterals with a common image Iδ

which clearly (as a sentence) equals ¬Iγ . The subcase 1b implies that l(Iγ) = 0
and hence l(Iδ) = 1.

As we assume, γ′ is not spoiled. Then 12.10 implies that γ is not spoiled, ei-
ther. Remembering that γ is an rt-development of I+

γ and δ is an rt-development
of I+

δ = ¬I+
γ , a little analysis of the definition of “spoiled” convinces us that

then δ = ∃zm+1∀zm+2¬ω(zm+1, zm+2) and δ′ = ¬ω(a, b). This means that
there are nodes β3, β4 with β ≺ β3 ≺ β4 " β′, where β4 is a child of β3, such
that, if we denote by δ3 and δ4 the descendants of δ in β3 and β4, respectively,
we have δ3 = ∀zm+2¬ω(a, zm+2) and δ4 = ¬ω(a, b). Clearly Iδ is the image of
both δ3, δ4. Again, the transfer from β3 to β4 could only have taken place by
the subcase 1b, with δ3 in the role of γi of the latter. But this is impossible
because, as we already know, l(Iδ) = 1, whereas 1b requires that l(Iδ) = 0.

Lemma 12.12 T is safe.

PROOF. Suppose, for a contradiction, β is a node of T containing two surface
occurrences of one and the same atom. Denote the corresponding osubsentences
— of course they must be quasiosliterals — by γ and δ. The age of these

61

quasiosliterals is 2n and, as n �= 0, they are aged, which, by 12.9 means that
they are spouses to each other. Let β1 be the most remote ancestor of β in
which (the ancestors of) γ and δ first became spouses. The age of at least one
of these two spouses in β1 should be exactly 2 (and 1 in the parent of β1), for
otherwise 12.9 implies that their parents (already) were spouses to each other.
We may suppose that γ is the quasiosliteral whose ancestor in β1 was of age 2.
Let us then fix proper descendants β2 ≺ . . . ≺ βn " β of the node β1 such that
for each 2 ≤ j ≤ n, the age of the ancestor of γ in βj is 2j. Since γ is not spoiled
in β, by 12.10, its ancestors in β1, . . . , βn are not spoiled either, whence 12.11
easily implies that the image β′

j of each such βj is different from the image β′
j−1

of βj−1. Then, by 12.7a, we have that β′
1H . . .Hβ′

n, where H is the transitive
closure of the hyperdevelopment relation. This means that the hypercomplexity
of β′

1 is ≥ n. But the hypercomplexity of β′
1 is less than that of the original

formula α (for, β′
1 contains a married couple but α does not). Consequently,

the hypercomplexity of α is greater than n, which is a contradiction (recall that
n was just the hypercomplexity of α). ♣

Lemma 12.12 completes the proof of Lemma 12.6. ♣

Now we are ready for a finishing stroke.

13 Proof of Theorem 5.5(iii)⇒(i)

This part of Theorem 5.5 could be called the arithmetical completeness of ET .

Lemma 13.1 If there is a safe primitive recursive countertree for a sentence
α of L, then there is an arithmetical translation τ for α such that ατ is not
effectively true in the standard model of arithmetic.

PROOF. Let us fix a safe primitive recursive countertree T for α. For sim-
plicity and without loss of generality we assume that T is infinite, every natural
number is its node and 0 is its root. From now on, “node”, “parent” etc. will
mean those in T .

We also fix the set {P1, . . . , Pn} of all predicate letters of α. And for each
i with 1 ≤ i ≤ n we say that a sentence β of arithmetic is Pi-appropriate, if β
contains exactly as many free variables as the arity of Pi, and if, at the same
time, β does not contain variables (no matter free or bound) occuring in α.

It is convenient to assume throughout this proof that there are no predicate
letters or variables in our language L other than those ocurring in α.

First we need to introduce notations for some functions and relations.

• By abuse of notation, we use x̂ to denote the function of x that returns
the code of the content of node x (recall from 12.1 that we also use the
same expression to denote this content itself).

62

• transl(x, t1, . . . , tn) is the n+1-place function that returns the code of the
sentence Sτ , where S is the x-coded sentence and τ is the translation that
is defined exactly for the predicate letters P1, . . . , Pn and assigns to each
Pi the ti-coded Pi-appropriate formula (according to Convention 11.8, if
ti does not code such a formula, then the function returns 0).

• Parent(x, y) is the relation “x is the parent of y”.

• Sibl(x, y) is the relation “x and y are siblings”.

• Contains(x, y) is the relation “The x-coded sentence has a surface occur-
rence of the y-coded sentence”.

• For a formula β(x1, . . . , xk) of arithmetic or of L with exactly x1, . . . , xk

free, we use [β] (or [β(x1, . . . , xk)]) to denote the k-place primitive re-
cursive function that assigns to each k-tuple a1, . . . , ak of numbers the
code of the sentence β(a1, . . . , ak); we assume that the term (see 3.6)
[β(x1, . . . , xk)] has exactly the same free variables x1, . . . , xk as the for-
mula β(x1, . . . , xk). Note that if β has no free variables, then [β] is simply
the code of β.

• su(x, y1, . . . , yn) is the (n + 1)-place function that returns the code of
the sentence that is the result of respectively substituting the numbers
y1, . . . , yn for the variables “t1”,. . . , “tn” in the x-coded formula.

• (s)i is the 2-place function that returns the ith term of the s-coded finite
nonempty sequence of numbers.

• lh(s) is the function that returns the length of the s-coded finite nonempty
sequence of numbers.

It is easily seen that these functions and relations are primitive recursive.

Now, recalling the definition of the predicate Solves from Section 11, abbre-
viating t1, . . . , tn by 2t and using “φ → ψ” for “¬φ ∨ ψ”, we define

Spec(v,2t) ≡ ∃s
(
Solves(s, transl(v̂,2t)) ∧ ∀v′∀s′

(
2v′ · 3s′

< 2v · 3s ∧ Sibl(v, v′) → ¬Solves(s′, transl(v̂′,2t)))).
Explanation: The function 2v · 3s is used to encode pairs (v, s) of natural

numbers. And 2t is in fact a variable for translations. Introducing some appar-
ently not very adequate jargon, we can say that Spec(v,2t) asserts that, under the
translation 2t, the node v has the shortest effective solution among its siblings.
More precisely this means that the 2t-translation of v̂ has an effective solution s
such that there is no pair (v′, s′) smaller than (s, v) where v′ is a sibling of v
and s′ is an effective solution to the 2t-translation of v̂′.

63

Next, we define

Superspec(v,2t) ≡ ∃s
(
(s)1 = 0 ∧ (s)lh(s) = v ∧

∀i1≤i<lh(s)Parent((s)i, (s)i+1) ∧
∀i1≤i≤lh(s)Spec((s)i,2t)

)
.

Using our jargon, Superspec(v,2t) asserts that under the translation 2t, every
ancestor of the node v (including v) has the shortest effective solution among
its siblings.

For every i with 1 ≤ i ≤ n, let mi be the code of the formula

∃v
(
Contains

(
v̂, [¬Pi(z1, . . . , zki)]

) ∧ (19)

Superspec
(
v, su(t1, t1, . . . , tn), . . . , su(tn, t1, . . . , tn)

))
,

where ki is the arity of Pi and where we assume that none of the variables of
this formula occurs in α.

We now define the translation τ : τ is a finite function defined just for
P1, . . . , Pn such that for every i with 1 ≤ i ≤ n,

τ(Pi) = ∃v
(
Contains(v̂, [¬Pi(z1, . . . , zki)]) ∧

Superspec
(
v, su(m1,m1, . . . ,mn), . . . , su(mn,m1, . . . ,mn)

))
.

Lemma 13.2 For each i with 1 ≤ i ≤ n,

su(mi,m1, . . . ,mn) = [
(
Pi(z1, . . . , zki)

)τ].

PROOF. Indeed, su(mi,m1, . . . ,mn) represents the code of the formula
which is the result of respectively substituting the numbers m1, . . . ,mn for the
variables “t1”,. . . ,“tn” in the mi-coded formula, i.e. in the formula (19), and(
Pi(z1, . . . , zki)

)τ is just such a formula. ♣

We now introduce the following abbreviation:

xτ ≡ transl
(
x, su(m1,m1, . . . ,mn), . . . , su(mn,m1, . . . ,mm)

)
.

Lemma 13.3 For any sentence γ, [γ]τ = [γτ].

PROOF. Indeed, in view 13.2, xτ is the function of x that returns the code
of Sτ , where S is the x-coded sentence. ♣

64

Let now

Special(v) ≡
Spec

(
v, su(m1,m1, . . . ,mn), . . . , su(mn,m1, . . . ,mn)

)
and

Superspecial(v) ≡
Superspec

(
v, su(m1,m1, . . . ,mn), . . . , su(mn,m1, . . . ,mn)

)
.

That is, if we unfold the abbreviations Spec and Superspec in the above
formulas and use the abbreviation xτ , we have:

Special(v) ≡ ∃s
(
Solves(s, v̂τ) ∧ ∀v′∀s′

(
2v′ · 3s′

< 2v · 3s ∧ Sibl(v, v′) → ¬Solves(s′, v̂′τ)))

and

Superspecial(v) ≡ ∃s
(
(s)1 = 0 ∧
(s)lh(s) = v ∧
∀i1≤i<lh(s)Parent

(
(s)i, (s)i+1

) ∧
∀i1≤i≤lh(s)Special

(
(s)i

))
.

We will say that a node c is special, if Special(c) is true which, using our
jargon, means that under the translation τ , c has the shortest effective solution
among its siblings.

And we say that a node c is superspecial, if Superspecial(c) is true, i.e. c
and all its ancestors are special.

Then, for each 1 ≤ i ≤ n and a1, . . . , aki , P τ
i (a1, . . . , aki) asserts that there

is a superspecial node with a surface occurrence of the sliteral ¬Pi(a1, . . . , aki).

Lemma 13.4 For any number pv, if Special(pv) is true, then it is effectively
true.

PROOF. Suppose Special(pv) is true. Let then ps be a parameter for which
the sentence

Solves(ps, p̂v
τ) ∧ ∀v′∀s′(

2v′ · 3s′
< 2pv · 3ps ∧ Sibl(pv, v

′) → ¬Solves(s′, v̂′τ)) (20)

is true. Then both its conjuncts are true. Let

(a1, b1), . . . , (ak, bk)

65

be all pairs (a, b) such that 2a · 3b < 2pv · 3ps and a is a sibling of pv. The truth
of the second conjunct of (20) means that for each 1 ≤ i ≤ k, the Σ2-sentence
¬Solves(bi, âi

τ) is true and hence, by 11.5, has an effective solution gi. Fix this
finite list

g1, . . . , gk

of effective solutions to

¬Solves(b1, â1), . . . ,¬Solves(bk, âk).

Now we describe Proponent’s strategy for Special(pv): First, Proponent goes
from the position Special(pv) to the position (20) (i.e. deletes “∃s” and in what
remains substitutes the parameter ps for the variable s). By 2.9, it suffices
to show that Proponent’s strategy solves (20), and this means that it solves
both its conjuncts. But the first conjunct is a true Π2-sentence and, therefore,
Proponent can use strategy UNIV for it (see 11.4). As for the second conjunct,
Proponent’s strategy should be able to solve the sentence

¬2a · 3b < 2pv · 3ps ∨ ¬Sibl(pv, a) ∨ ¬Solves(b, âτ) (21)

for any parameters a, b. If one of the first two disjuncts of this disjunction is
true, let Proponent go from (21) to this disjunct and then use strategy UNIV .
Otherwise, i.e. if 2a · 3b < 2pv · 3ps and a and pv are siblings, then for some
1 ≤ i ≤ k, (a, b) = (ai, bi). Let in this case Proponent go to the third conjunct
and then use the strategy gi for it. This strategy is an effective solution to
Special(pv). ♣
Lemma 13.5 For any node a, if Superspecial(a) is true, then it is effectively
true.

PROOF. Suppose a is superspecial. Let the nodes a1, . . . , am be such that
a1 is the root, am = a and for each 1 ≤ i < m, ai is the parent of ai+1. And let
b be the code of the sequence a1, . . . , am. For each 1 ≤ i ≤ m, ai is special and
hence, by 13.4, Special(ai) is effectively true, so let us fix effective solutions

g1, . . . , gm

to
Special(a1), . . . , Special(am).

Here is Proponent’s strategy for Superspecial(a), i.e. for

∃s
(

(s)1 = 0 ∧
(s)lh(s) = a ∧
∀i1≤i<lh(s)Parent

(
(s)i, (s)i+1

) ∧
∀1≤i≤lh(s)Special

(
(s)i

))
:

66

First, Proponent deletes “∃s” and substitutes the parameter b for the variable
s, coming to the position

(b)1 = 0 ∧ (22)
(b)lh(b) = a ∧
∀i1≤i<lh(b)Parent

(
(b)i, (b)i+1

) ∧
∀i1≤i≤lh(b)Special

(
(b)i

)
.

Now Proponent must have a winning strategy for each of the four conjuncts
of this sentence. The first three conjuncts are true ∆0-sentences and strategy
UNIV (as well as DZERO) can be used for them. As for the fourth conjunct,
i.e.

∀i(¬1 ≤ i ≤ lh(b) ∨ Special((b)i)
)
,

to solve it means to solve, for each c, the true sentence

¬1 ≤ c ≤ lh(b) ∨ Special((b)c).

This is done as follows: if the first conjunct, which is a ∆0-sentence, is true,
then Proponent chooses it and uses for it strategy UNIV . Otherwise Proponent
chooses the second conjunct and uses the strategy gc for it; in view of 11.10,
we may suppose that gc is stable for (Special(x), (y)z), and this means that gc

solves Special((b)c). ♣

Lemma 13.6 If a node b is special, then there is an effective function which is
a solution to every sentence ¬Special(a) where a is a proper sibling of b.

PROOF. Suppose b is special. Let us then fix p such that

Solves(p, b̂) is true (23)

and for any sibling a of b,

∀s′(¬2a · 3s′
< 2b · 3p ∨ ¬Solves(s′, âτ)

)
is true. (24)

Let then (a1, d1), . . . , (ak, dk) be all pairs (a, d) such that 2a · 3d < 2b · 3p. By
(24), for each 1 ≤ i ≤ k, the Σ2-sentence ¬Solves(di, âi

τ) is true and, by 11.5,
has an effective solution gi. Fix these solutions

g1, . . . , gk

to
¬Solves(d1, â1

τ), . . . ,¬Solves(dk, âk
τ).

67

We now describe a Proponent’s strategy which is a solution to every sentence
¬Special(a) where a is a sibling of b. A strategy solves ¬Special(a), i.e.

∀s
(

¬Solves(s, âτ) ∨

∃v′∃s′(2v′ · 3s′
< 2a · 3s ∧ Sibl(a, v′) ∧ Solves(s′, v̂′

τ
)
))

,

if it solves the sentence

¬Solves(d, âτ) ∨ ∃v′∃s′(
2v′ · 3s′

< 2a · 3d ∧ Sibl(a, v′) ∧ Solves(s′, v̂′
τ
)
)

(25)

for any d.
This is how Proponent should act for (25):
If the pair (a, d) is such that a is a sibling of b and 2b · 3p < 2a · 3d, then let

Proponent choose the right disjunct of (25), then delete in it “∃v′∃s′” and in
what remains substitute b and p for v′ and s′, respectively. The play comes to
the position

2b · 3p < 2a · 3d ∧ Sibl(a, b) ∧ Solves(p, b̂τ). (26)

Now Proponent must be able to solve each of the three conjuncts of (26). But
these conjuncts are true Π2-sentences, so Proponent can use UNIV .

Suppose now a is a sibling of b and not 2b · 3p < 2a · 3d, which means that
(as a �= b) 2a · 3d < 2b · 3p and thus, for some 1 ≤ i ≤ k, (a, d) = (ai, ci). Then
Proponent chooses the left disjunct of (25) and then uses the strategy gi for it.

It is easily seen that we have just described an effective solution to any
¬Special(a) where a is a sibling of b. ♣

We say that a node a of T is a nonbranch relative of a node b, if a �= b and
a is neither an ancestor nor a descendant of b, i.e. a and b don’t belong to one
branch of the tree. Otherwise a and b are branch relatives.

Lemma 13.7 If a node b is superspecial, then there is an effective function
which is a solution to every sentence ¬Superspecial(a) where a is a nonbranch
relative of b.

PROOF. Let b1, . . . , bm be such that b1 is the root, bm = b and, for each e
with 1 ≤ e < m, be is the parent of be+1. Since b is superspecial, all the be are
special, which, by 13.6, means that for each 1 ≤ e ≤ m, there is an effective
function ge which solves ¬Special(d) for every proper sibling d of be. Let us fix
these functions

g1, . . . , gm.

Our strategy must solve the sentence

¬(c)1 = 0 ∨

68

¬(c)lh(c) = a ∨
∃i1≤i<lh(c)¬Parent((c)i, (c)i+1) ∨
∃i1≤i≤lh(c)¬Special((c)i)

for any nonbranch relative a of b and any c. Note that if a is a nonbranch relative
of a superspecial node, then it is not superspecial, and the above sentence is
true. This is how Proponent acts in this case to solve that sentence:

If one of the first three disjuncts is true, then Proponent chooses this disjunct
and uses strategy UNIV for it.

Suppose now the first three disjuncts are false. Then Proponent goes to the
position

∃i(1 ≤ i ≤ lh(c) ∧ ¬Special((c)i)
)
. (27)

Note that in this case c really codes a sequence c1, . . . , ck such that c1 is the
root, ck = a and for each 1 ≤ i < k, ci is the parent of ci+1. Let j be the
biggest number such that cj is a common ancestor of a and b (which means that
cj = bj), and let p = j + 1. Clearly p ≤ m, k and bp and cp are proper siblings.
Proponent effectively finds p and goes from (27) to the sentence

1 ≤ p ≤ lh(c) ∧ ¬Special((c)p). (28)

The first conjunct of (28) is now solved by UNIV . And for the second conjunct
Proponent uses strategy gp. In view of 11.10, we may suppose that gp is stable
for (¬Special(x), (y)z), and then we have that gp solves ¬Special((c)p). ♣

Lemma 13.8 If ξ is a surface osliteral of a superspecial node, then ¬ξτ is
effectively true.

PROOF. Suppose a is a superspecial node and ξ is a surface osliteral of (the
content of) a. We need to consider two cases. Begin with the simpler one.

Case 1: ξ is a negated atom ¬P (b1, . . . , bm). Then ¬ξτ = (P (b1, . . . , bm))τ

is the true sentence

∃v(Contains(v̂, [¬P (b1, . . . , bm)]) ∧ Superspecial(v)
)
. (29)

By 13.5, there is an effective solution g (fix it) to Superspecial(a). The following
effective strategy of Proponent’s is a solution to (29): first Proponent goes from
(29) to

Contains(â, [¬P (b1, . . . , bm)]) ∧ Superspecial(a). (30)

Then Proponent uses UNIV for the left conjunct and the strategy g for the
right one.

Case 2: ξ is an atom P (b1, . . . , bm). Then ¬ξτ is the sentence

∀v(¬Contains(v̂, [¬P (b1, . . . , bm)]) ∨ ¬Superspecial(v)). (31)

69

First let us check that

Any node with a surface occurrence of ¬P (b1, . . . , bm) (32)
is a nonbranch relative of a.

Indeed, suppose, for a contradiction, there is a branch relative c of a with a
surface occurrence of ¬P (b1, . . . , bm). It is an evident property of countertrees
that if a literal has a surface occurrence in a node, it has a surface occurrence
in all descendants of that node. So, if c is an ancestor of a, then ¬P (b1, . . . , bm)
must have a surface occurrence in a, too, which is impossible because a is safe
and it has a surface occurrence of P (b1, . . . , bm). The case when a is an ancestor
of c is symmetric, and (32) is proved.

Proponent acts as follows: after Opponent goes from (31) to the position

¬Contains(ĉ, [¬P (b1, . . . , bm)]) ∨ ¬Superspecial(c)
for some c, in case the left disjunct is true, Proponent goes to this disjunct and
uses UNIV for it; otherwise, by (32), c is a nonbranch relative of the super-
special a, and then Proponent goes to ¬Superspecial(c) and uses the strategy
defined in 13.7 for it. ♣

Lemma 13.9 Suppose a node a is superspecial. Then there is a child b of a
such that b̂τ is effectively true.

PROOF. Suppose a is superspecial. Let â = A!(β1, . . . , βm, γ1, . . . , γk),
where each βi is a literal and each γi is a nonliteral. By the above lemma,
for each 1 ≤ i ≤ m, ¬βτ

i is effectively true. And âτ is effectively true because a
is special. Then, using the generalized modus ponens lemma (Lemma 10.1) m
times, we get that ψ, where ψ = A!(0 = 1, . . . , 0 = m, γτ

1 , . . . , γ
τ
k), is effectively

true. Note that the arithmetical label of ψ and the hyperlabel of â are equal
(“the” hyperlabel because â is clean).

Suppose the hyperlabel of â, and hence the label of ψ, is 0. Then there is
a development ψ′ of ψ which is effectively true, and ψ′ must be the result of
replacing in ψ some 0-labeled osubsentence (γj)τ (1 ≤ j ≤ k) by a development
(γ′

j)
τ of it, so we have that

A!(0 = 1, . . . , 0 = m, γτ
1 , . . . , γ

τ
j−1, γ

′τ
j , γτ

j+1, . . . , γ
τ
k)

is effectively true. Then, by generalized modus ponens again (taking into ac-
count that the sentences ¬0 = 1, . . . ,¬0 = m are effectively true), we have
that

A!(βτ
1 , . . . , β

τ
m, γτ

1 , . . . , γ
τ
j−1, γ

′τ
j , γτ

j+1, . . . , γ
τ
k)

is effectively true. But notice that

A!(β1, . . . , βm, γ1, . . . , γj−1, γ
′
j , γj+1, . . . , γk)

70

is a child of a. Thus, a has a child whose τ -translation is effectively true.
Suppose now that the hyperlabel of â, and hence the label of ψ, is 1. Then,

by the definition of countertree, a has a child c such that ĉ is a 1-hyperdevelop-
ment of â. Thus,

ĉ = A!(β1, . . . , βm, γ1, . . . , γj−1, γ
′
j , γj+1, . . . , γk)

for some 1 ≤ j ≤ k, where γj is 1-hyperlabeled and γ′
j is its 1-hyperdevelop-

ment. Now notice that ĉτ is a relaxed development of âτ and, as the latter is
effectively true and 1-labeled, ĉτ is effectively true. ♣

Lemma 13.10 There are no superspecial nodes.

PROOF. According to the previous lemma, if a is a superspecial node, then
it has a child b such that b̂τ has an effective solution p. We may suppose that
for any pair (b′, p′), if b′ is a sibling of b and p′ is an effective solution to b̂′

τ
, we

have 2b ·3p < 2b′ ·3p′
. This means that b is superspecial. Thus, any superspecial

node must have a superspecial child, and then, if there is a superspecial node,
there is an infinite chain of superspecial nodes in which each node is the parent
of the next node in the chain, which is impossible because, by 12.4, the tree T
has a finite height. ♣

We now can complete the proof of Lemma 13.1. According to Lemma 13.10,
the root, whose content is the initial sentence α, is not superspecial, which, by
definition (since the root has no predecessors and no siblings) means that simply
ατ is not effectively true. ♣

To complete the proof of Theorem 5.5(iii)⇒(i), suppose φ �∈ ET . Then, by
Lemma 12.6, there is a primitive recursive countertree for φ+; and then, by
Lemma 13.1, there is a translation τ such that (φ+)τ is not effectively true.
Take the composition ∗ of + and τ . Then φ∗ is not effectively true.

14 ET is strictly between BCK and classical logic

The author has failed to find an axiomatization for ET , and most likely this
task cannot be accomplished unless the language of ET is either restricted, as
this is done in the next section, or extended by means of new multiplicative-style
operators.

In this section we locate an interval to which ET belongs in the hierarchy
of known sequential calculi.

Below “(hyper)sentence” will always mean (hyper)sentence of our language
L and “parameter”, as in the previous sections, will mean natural number.

71

The reader should have noticed that in our semantics (and in the syntactic
description of ET) the formulas α�(β�γ) and (α�β)�γ are the same in all
reasonable senses. This enables us to relax the formation rules and allow for-
mulas like α1�. . .�αn, dropping all the vacuous parentheses between the αi (of
course, we can do the same with
,∨ and ∧, too). We also agree to identify
α�β with β�α. That is, we look at α1�. . .�αn as the application of the op-
erator � to the multiset {α1, . . . , αn} rather than to the sequence 〈α1, . . . , αn〉.
A multiset is a set which may contain more than one (but a finite number of)
copies of its elements; in other words, a multiset is a sequence in which the
order, — but not the quantity, — of its elements is disregarded.

In what follows, Greek capital letters always denote the multiplicative dis-
junction α1�. . .�αn of some sentences α1, . . . , αn, for some n ≥ 0. If n = 1,
such a “disjunction” is just α1, and if n = 0, the “disjunction” is empty; Θ�β,
where Θ is the empty disjunction, is understood as β.

Lemma 14.1 For any hypersentences Φ�φ ∈ ET and Ψ�ψ ∈ ET , we have
Φ�Ψ�(φ
 ψ) ∈ ET .

(We mean that all the married couples of Φ�φ and Ψ�ψ are preserved in
Φ�Ψ�(φ
 ψ) and there are no other married couples in the latter).

PROOF. Assume Φ�φ ∈ ET and Ψ�ψ ∈ ET . We proceed by induction on
the sum of the hypercomplexities of these two hypersentences.

Case 1: Φ�Ψ�(φ
 ψ) is 0-like. A little analysis of the case convinces us
that then one of the hypersentences Φ�φ, Ψ�ψ, — say, the first one, — is 0-
like. This means that there is a 0-hyperdevelopment Φ′�φ′ ∈ ET of Φ�φ; the
hypercomplexity of the former is less than the hypercomplexity of the latter, and
we can use the induction hypothesis and conclude that Φ′�Ψ�(φ′
 ψ) ∈ ET .
Now it remains to notice that the latter is a 0-hyperdevelopment of Φ�Ψ�(φ

ψ).

Case 2: Φ�Ψ�(φ
ψ) is 1-like. Consider an arbitrary 1-hyperdevelopment
θ of this hypersentence. We want to show that θ ∈ ET .

θ must result from Φ�Ψ�(φ
 ψ) by replacing a surface multiplicatively
atomic osubsentence η by a 1-hyperdevelopment η′ of η. η occurs in one of the
osubsentences Φ, φ,Ψ or ψ, — say, in φ, and let φ′ be the result of replacing in
φ the osubsentence η by η′. Then Φ�φ′ is a 1-hyperdevelopment of Φ�φ and,
by 6.15.1, Φ�φ′ ∈ ET . Then, by the induction hypothesis, Φ�Ψ�(φ′
ψ), i.e.
θ, belongs to ET . ♣

Remember that in our language ¬ is applicable only to atoms, and in other
cases it is used just as an abbreviation.

A sequent for us is a multiset {α1, . . . , αn} of sentences, written in the form
α1�. . .�αn. So, we use “�” instead of “,”. The other technical difference from
the common presentation of sequential calculi is that we use parameters (as we
deal with sentences only) instead of free variables.

72

Here is a list of (an axiom and) some sequential rules of inference, where:

• ξ in (33) is atomic;

• α(a) in (37) and (38) is the result of substituting in α(x) all free occur-
rences of the variable x by the parameter a;

• In (38) the parameter a does not occur in Θ, α(x).

Θ�ξ�¬ξ ; (33)

Θ1�α1 Θ2�α2

Θ1�Θ2�(α1
 α2)
; (34)

Θ�αi

Θ�(α1 ∨ α2)
, i = 1, 2; (35)

Θ�α1 Θ�α2

Θ�(α1 ∧ α2)
; (36)

Θ�α(a)
Θ�∃xα(x) ; (37)

Θ�α(a)
Θ�∀xα(x) ; (38)

Θ�α�α

Θ�α
. (39)

Notice that as we deal with multisets (i.e. multiplicative disjunctions of
multisets of disjuncts), the exchange rule

Θ�α1�α2�Θ′

Θ�α2�α1�Θ′

is senseless because the premise and the conclusion of this rule are simply
thought to be identical.

The logic BCK, also called Affine logic, is given by the axiom (33) and the
rules (34)-(38).9 It is known that the addition of the rule of cut to this system
does not really extend it.

And the whole list (33)-(39) gives classical logic CL.

The length of a BCK-derivation of φ is the length of the longest branch of
the BCK-derivation tree for φ.

Lemma 14.2 For any formula φ and any parameters c and b, if φ has a BCK-
proof of length l, then so does φ[c/b].

9BCK is an extension of the multiplicative-additive linear logic (MALL). The latter is
given by the rules (34)-(38) and the axiom α�¬α, where α is atomic.

73

(Recall that φ[c/b] denotes the result of replacing in φ all the occurrences of the
parameter c by the parameter b.)

PROOF. Induction on the length of the BCK-derivation.
If φ is an axiom (of the form (33)), clearly so is φ[c/b].
Among the rules (34)-(38) we consider only the last one; the others are more

or less straightforward.
So, suppose Θ�α(a), where a has no occurrence in Θ, α(x), has a BCK-

proof of length l. We want to show that then (Θ�∀xα(x))[c/b] has a BCK-proof
of length l+1. Let a′ be a parameter not occuring in Θ, α(x) and different from
c and b. By the induction hypothesis, (Θ�α(a))[a/a′], i.e. Θ�α(a′), has a
BCK-proof of length l. Again, by the induction hypothesis, Θ�α(a′)[c/b], i.e.
(Θ[c/b])�(α(a′)[c/b]), has a BCK-proof of length l. Notice that a′ does not
occur in Θ[c/b], α(x)[c/b] and α(a′)[c/b] is the result of replacing in α(x)[c/b]
the variable x by a′. Then, applying (38) to (Θ[c/b])�(α(a′)[c/b]), we get that
(Θ[c/b])�∀x(α(x)[c/b]), i.e. (Θ�∀xα(x))[c/b]), has a BCK-proof of length l+1.
♣

Lemma 14.3 Suppose BCK # φ and φ′ is a 1-hyperdevelopment of φ. Then
BCK # φ′.

PROOF. We consider the case when ψ′ is the result of replacing in φ an
osubsentence ∀yβ(y) by β(d). The other case, when the replaced subsentence is
an additive conjunction, is simpler.

We proceed by induction on the length of theBCK-proof of φ. The only non-
straightforward case the rule (38), when φ = Θ�∀xα(x) and BCK # Θ�α(a)
for a not occuring in Θ, α(x). In view of 14.2, we may suppose that a �= d.
There are two subcases to be considered:

Subcase 1: ∀yβ(y) and ∀xα(x) are different osubsentences of φ. Then φ′ =
Θ′�∀xα(x), where Θ′ is the result of replacing in Θ the osubsentence ∀yβ(y) by
β(d). Θ′�α(a) is then a 1-hyperdevelopment of Θ�α(a) and, by the induction
hypothesis, BCK # Θ′�α(a). a �= d implies that a does not occur in Θ′;
therefore, by the rule (38), BCK # Θ′�∀xα(x), i.e. BCK # φ′.

Subcase 2: ∀yβ(y) and ∀xα(x) are one and the same osubsentence of φ. Then,
as BCK # Θ�α(a), we have by 14.2 that BCK # Θ�α(d), i.e. BCK # φ′. ♣

Fact 14.4 BCK ⊂ ET ⊂ CL (⊂ means proper inclusion).

PROOF. The inclusion ET ⊆ CL is evident: Suppose α ∈ ET . Then,
by 5.5(i)⇒(ii), α is effectively true in every model; effective truth means the
existence of an effective solution, and existence of a solution means truth; thus,
α is true in every model, whence, by 5.4(ii)⇒(i), α ∈ CL. And to see that
this inclusion is proper, it is enough to check that either of the three classical
tautologies listed below, where α is a zero-place predicate letter and β is a
1-place predicate letter, does not belong to ET :

74

• α ∨ ¬α;
• α�(¬α
 ¬α);
• ∃x∀y(β(x)�¬β(y)) (although ∀y∃x(β(x)�¬β(y)) ∈ ET).

The fact that BCK �= ET can be verified by a routine checking that either
of the following two formulas10 belongs to ET but is not derivable in the cut-free
BCK:

(
(¬α1�¬α2)
 (¬β1�¬β2)

)
�

(
(α1�β1)
 (α2�β2)

)
;

(
(¬α1 ∧ ¬α2)
 (¬β1 ∧ ¬β2)

)
�((

α1�(β1 ∨ β2)
) ∨ (

α2�(β1 ∨ β2)
) ∨ (

(α1 ∨ α2)�β1

) ∨ (
(α1 ∨ α2)�β2

))
.

It remains to show that BCK ⊆ ET . Assume BCK # φ. To show that
φ ∈ ET , we use induction on the complexity of φ, under which we mean the
number of occurrences of logical operators in φ. BCK # φ means that one of
the following five cases takes place:

Case 1: φ is an axiom Θ�ξ�¬ξ. Let φ′ be the marriage-extension (and
thus a 0-hyperdevelopment) of φ in which the osliterals ξ and ¬ξ are spouses
to each other. Clearly φ′ is 1-like, and so is any 1-hyperdevelopment of φ′,
any 1-hyperdevelopment of any 1-hyperdevelopment of φ′, . . . This means that
φ ∈ ET .

Case 2: BCK # φ follows from BCK # α and BCK # β by the rule (34).
The complexities of α and β are less than that of φ, which enables us to use
the induction hypothesis and conclude that α, β ∈ ET . Then, by Lemma 14.1,
φ ∈ ET .

Case 3: BCK # φ follows from BCK # α by one of the rules (35) or (37).
The complexity of α is less than that of φ and, by the induction hypothesis,
α ∈ ET . But α is a 0-hyperdevelopment of φ and, by 6.15, the latter belongs
to ET .

Case 4: BCK # φ follows from BCK # α by one of the rules (36) or (38).
Then, observe, φ is 1-like. Consider an arbitrary 1-hyperdevelopment φ′ of φ.
By 14.3, BCK # φ′, whence, by the induction hypothesis (as the complexity
of φ′ is less than that of φ), φ′ ∈ ET . Thus, every 1-hyperdevelopment of the
1-like φ belongs to ET , and this means that φ ∈ ET . ♣

15 The
-free fragments of BCK and ET are
the same

Let L− denote the fragment of our language L defined by:
10The first formula is taken from [2].

75

α ∈ L− iff α ∈ L and α does not contain
.

And we define BCK− as BCK without the rule (34).

Theorem 15.1 For any sentence φ of L−, BCK− # φ ⇔ φ ∈ ET .

PROOF. The (⇒) part immediately follows from Fact 14.4.
We prove the (⇐) part by induction on the complexity of φ. Assume φ is a

sentence of L− and φ ∈ ET .
Case 1: φ is 1-like. Taking into account that φ is clean (see 6.1.6), this

implies that φ contains a surface osubsentence of the form α∧β or ∀xα(x), that
is, one of the following two subcases takes place:

Subcase 1a: φ = Θ�∀xα(x). Let a be a parameter not occuring in φ.
Θ�α(a) is a 1-hyperdevelopment of φ and, by 6.15.1, as the latter belongs to
ET , so does the former. But the complexity of Θ�α(a) is less than that of φ
and then, by the induction hypothesis, BCK # Θ�α(a); then, by the rule (38),
BCK # φ.

Subcase 1b: φ = Θ
 (α ∧ β). This subcase is similar to the previous one.
Case 2: φ is 0-like. Then φ ∈ ET means that there is a 0-hyperdevelopment

φ′ ∈ ET of φ, i.e. one of the following three subcases takes place:
Subcase 2a: φ′ is a marriage-extension of φ. This means that φ contains

surface osliterals ξ and ¬ξ, and as φ is
-free, φ has the form Θ�ξ �¬ξ, i.e. it
is an axiom.

Subcase 2b: φ = Θ�(α1 ∨ α2) and φ′ = Θ�αi (i = 1 or i = 2). By the
induction hypothesis, BCK # Θ�αi, whence, by the rule (35), BCK # φ.

Subcase 2c: φ = Θ�∃xα(x) and φ′ = Θ�α(a). This subcase is similar to
the previous one. ♣

References

[1] S.Abramsky and R.Jagadeesan, Games and full completeness for multiplica-
tive linear logic. Journal of Symbolic Logic 59 (1994), no. 2, pp.543-574.

[2] A.Blass, A game semantics for linear logic. Annals of Pure and Applied
Logic, v.56 (1992), pp. 183-220.

[3] Game-Theoretical Semantics: Essays on Semantics by Hintikka, Carlson,
Peacocke, Rantala and Saarinen (edited by E.Saarinen). Dordrecht, Holland,
1979.

[4] J.Y.Girard, Linear logic. Theoretical Computer Science, v.50-1 (1987), pp.
1-102.

[5] S.C.Kleene, Introduction to Metamathematics. New York, 1952.

76

[6] K.Lorenz, Dialogspiele als semantische Grundlage von Logikkalkülen. Arch.
Math. Logik Grundlag., v.11 (1968), pp.32-55, 73-100.

[7] P.Lorenzen, Ein dialogisches Konstruktivitätskriterium. In: Infinitistic
Methods (PWN, Warsaw, 1959), pp.193-200.

[8] A.S.Troelstra, Realizability. ILLC Prepublication Series for Mathematical
Logic and Foundations ML-92-09. Amsterdam, 1992.

77

