HMAX Model

Jenish Maharjan
Rahul Thapa
Introduction

- Computational model of object recognition in Cortex
- Riesenhuber & Poggio, Nature Neuroscience, 1999
- Serre & Riesenhuber, 2004
- Dubbed by Mike Tarr as “Hierarchical Model and X”
- Summarizes the basic facts about the ventral visual stream, a hierarchy of brain areas thought to mediate object recognition in cortex
Ventral Visual Pathway

- Mediates Object recognition in cortex
- V1 - V2 - V4 - IT → PFC
- Cells found in macaque IT - key role in object recognition
- Hallmark of those cells - Robustness of their responses to stimulus transformations such as scale and position changes
Key Goals of Object Recognition

- Invariance - the ability to recognize a pattern under various transformations
- Specificity - the ability to discriminate between different patterns.
Hubel and Wiesel

- Model of Simple Cells and Complex Cells
- Simple Cells - Small Receptive Fields with phase dependence
- Complex Cells - Large Receptive Fields with no phase dependence
- Simple cells with neighboring receptive fields feed into the same complex cell, thereby endowing that complex cell with a phase-invariant response
Fukushima - Neocognitron
Summary of Ideas behind the HMAX model

- “Immediate” visual processing is feedforward and hierarchical: low levels detect simple features, which are combined hierarchically into increasingly complex features to be detected.
- Layers of hierarchy alternate between “sensitivity” (to detecting features) and “invariance” (to position, scale, orientation).
- Size of receptive fields increases along the hierarchy.
- Degree of invariance increases along the hierarchy.
HMax Model

[Diagram showing the HMax Model with layers labeled as IT/PFC, AIT, V1 - PIT, and corresponding task-related, object-tuned, view- and component-tuned units, as well as a view-based module and retinal image.]
Core of the HMAX Model

Task: To produce a higher level representation of an image that will be useful for classification.

- **Classification layer**: Object or image classification
- **C2 layer**: Max activation over each prototype
- **S2 layer**: Prototypes (small image patches)
- **C1 layer**: Max over local S1 units
- **S1 layer**: Edge detectors
- **Image (gray-scale)**
Simple Cells S1

- Input images are densely sampled by arrays of two-dimensional filters $G_{x,y}$ (second derivative of Gaussians) that can be expressed as:

$$G_{x,y} = \frac{(-x \cos \theta + y \sin \theta)^2}{\sigma^2(\sigma^2 - 1)} \exp\left(-\frac{(x \cos \theta + y \sin \theta)^2 + (-x \cos \theta + y \sin \theta)^2}{2\sigma^2}\right)$$

- Output: -1 to 1, modeling simple cells of phase 0 and π
Complex Cells C1

- C1 unit's activity is determined by the strongest input it receives
- This mechanisms rely on a non-linear MAX operation (or its soft-MAX approximation)
- SUM (linear Summation with Equal weights) vs MAX (a nonlinear maximum operation)
Simple Cells S2

- S2 unit response function is a Gaussian with mean 1 (i.e., \{1, 1, 1, 1\}) and standard deviation 1
- S2 unit has a maximal firing rate of 1 which is attained if each of its four afferents fires at a rate of 1 as well
Complex Cells C2

- To finally achieve size invariance over all filter sizes in the four filter bands and position invariance over the whole input image, the S2 units are again pooled by a MAX operation to yield C2 units.
- Output units of the HMAX core system, designed to correspond to neurons in extrastriate visual area V4 or posterior IT (PIT).
View Tuned Units

- C2 units in turn provide input to the view-tuned units (VTUs),
- VTU respond to a specific two-dimensional view of a three-dimensional object.
- The C2 → VTU connections are the only stage of the HMAX model where learning occurs.
HMax Model
Thank You!