Section 3.4.

Solving Problems by Searching

yrns a solution, or failure/cutoll
‘[AL-STATE), problem, femit)

Is 4 solution, or (ailure/cutoff
LUTION(node)

g) do

) }

mit — 1) 2
:

1e
n failure i

limited tree search. {
— ———e N

> reached from any other city in at most b
state space, gives us a better depth limit,)
_ For most problems, however, we will
; problem.
simple modific
implemented as a simp
a-limited search can terminate with two
s no solution; the euloff value indicates

ation to the general (ree-
le recursive al-

1
¢ depth-first search) is a general stratcgy,
¢h, that finds the best depth limit, 1t does
1. then 2, and so on—until a goal is found. NE
e depth of the shallowest goal node. The = N
sning combines the benelits of depth-first
memory requirements are modest: O(bed)
ete when the branching factor is finite and
ction of the depth of the node. Figure 3.19
SEARCH on a binary search tree, where the

o a0

sful because states are generated multiple ¥
s that in a search tree with the same (or &
most of the nodes are in the bottom levels _
re generated multiple times. In an iterative |

(depth d) are generated once, those on the .

m i

Uninlormed Search Strategies
. 89

function ITERATIVE-D

: :-DEEPENING-SEARC oble i

oot = Olrcorlc H(problem) returns a solution, or failure
‘T:s‘ult «— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

Figure 3.18 The iterati .
i — Wi[he.ucmu\./e de?ep.emng search algorithm, which repeatedly applies depth
limited search LTINS limits. It terminates when a solution is found or if thy g

rch returns failure, meaning that no solution exists i ESTcRlE

Limit =0 & °
Limit=1 LOR @
AN B
wE @_ -’_’_\:@_- o A .
Limit=2 0] /@
. . B o e &

A5 'y
'/.\\. "‘5/@\@ 0)'\0 N o”i ;

Limit=3 @ 2

Four iterations of iterative deepening search on a binary tree

Figure 3.19

‘ 90 Chapter 3. Solving Problems by Searching

hext-to-bottom level are generated twice, and so on, up to the children of the root, which are
generated d times. S0 the total number of nodes generated in the worst case 1s

N(IDS) = (d)b+ (d = V* + -+ + (1o,
which gives a time complexity of O(b%)——asymptotically the same as breadth-first search.

There is some extra cost for generating the upper levels multiple times, but it is not large. For
example, if b = 10 and d = 5, the numbers are

N(IDS) 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
N(BFS) = 10+ 100 + 1,000 + 10,000 + 100,000 = 111,110 .

If you are really concerned about repeating the repetition, you can use a hybrid approach

| that runs breadth-first search until almost all the available memory is consumed, and then

é;— runs iterative deepening from all the nodes in the frontier. In general, iterative deepening is

= the preferred uninformed search method when the search space is large and the depth of the
solution is not known.

Tterative deepening search is analogous to breadth-first search in that it explores a com-
plete layer of new nodes at each iteration before going on (o the next layer. It would seem
worthwhile to develop an iterative analog to uniform-cost search, inheriting the latter algo-
rithm’s optimality guarantees while avoiding its memory requirements. The idea is to use

e increasing path-cost limits instead of increasing depth limits. The resulting algorithm, called
LENGTHENING iterative lengthening search, is explored in Exercise 3.17. It tuns out, unfortunately, that
iterative lengthening incurs substantial overhead compared to uniform-cost search.

Il

3.4.6 Bidirectional search

The idea behind bidirectional search is to run two simultaneous searches—one forward from
the initial state and the other backward from the goal—hoping that the two searches meet in
the middle (Figure 3.20). The motivation is that p4/2 1+ b4/2 is much less than bd, or in the
figure, the area of the two small circlés is less than the area of onc big circle centered on the
start and reaching to the goal. ' II
Bidirectional search is implemented by replacing the goal test with a check to see 1
| whether the frontiers of the two searches intersect; if they do, a solution has been found. |
(It is important to realize that the first such solution found may not be optimal, even if the !
two searches are both breadth-first; some additional search is required to make sure there
isn’t another short-cut across the gap.) The check can be done when each node is generated
or selected for expansion and, with a hash table, will take constant time. For example, if a
problem has solution depth d— 6, and each direction runs breadth-first search one node ata |
time, then in the worst case the two searches meet when they have generated all of the nodes
at depth 3. For b= 10, this means & total of 2,220 node generations, compared with L1110
for a standard breadth-first search, Thus, the time complexity of bidirectional search using
breadth-first searches in both directions is O(b%?). The space complexity is also o@**). |
. We can reduce this by roughly half if one of the two searches is done by iterative deepening, .
| but at least one of the frontiers must be kept in memory so that the intersection check can be
| done. This space requirement is the most significant weakness of bidirectional search.

Solving Problems by_ScBrc_h'm_g
to the children of the root, which are
ed in the wotst case 18

ajly the same as breadth-first search.
multiple times, but it is not large. For

),000 = 123,450
3,000 = 111,110

ition, you can use i hybrid approach
lable memory is consumed, and Ihe!\
tier, In general, iterative di’t:'pt!ﬂl:f!‘-g is
reh space is large and the depth of the

(h-first search in that it explores a com-
ng on to the next layer. It would scem
-cost search. inheriting the latter algo-
mory requirements. The idea is to use
1 limits. The resulting algorithm, called
e 3.17. Tt turns oul, unfortunately, that

ypared to uniform-cost search.

nultaneous searches—one forward [rm"n
J—hoping that the two searches rnf:ci in
/2 4 1?2 ig much less than B4, or in the
tie arca of one big circle centered on the

acing the goal test with a check 1o see

« if they do, a solution has been found.

m found may not be optimal, even if the
. re there

\al search is required to make su
an be done when each node is gencm.ied
vill take constant time. For example, if &
on runs breadth-first search one node at &
when they have gencrated all of the nmlc[sj
ode generations, compared with 1,11 l.l.i

+ complexity of bidirectional search uj}gg
). The space complexity is also O(bY*)-

vo searches is done by iterative deepenings
heck can be i

smory so that the intersection ¢
nt weakness of bidirectional search.

Section 3.4.

Uninformed Search Strategies 91

PREDECESSOR

Figure 3.20 A schematic view of a bidirectional search that is about to succeed when a
branch from the start node meets a branch from the goal node.

The reduction in time complexity makes bidirectional search attractive, but how do we
search backward? This is not as easy as it sounds. Let the predecessors of a state x be all
those states that have x as a successor. Bidirectional search requires 2 method for computing
predecessors. When all the actions in the state space are reversible, the predecessors of x are
just its successors. Other cases may require substantial ingenuity.

Consider the question of what we mean by “the goal” in searching “backward from the
goal.” For the 8-puzzle and for finding a route in Romania, there is just one goal state, so the
backward search is very much like the forward search. If there are several explicitly listed
goal states—for example, the two dirt-free goal states in Figure 3.3-—then we can construct a
new dummy goal state whose immediate predecessors are all the actual goal states. But if the
goal is an abstract description, such as the goal that “no queen attacks another queen” in the
n-queens problem, then bidirectional search is difficult to use.

3.4.7 Comparing uninformed search strategies

Figure 3.21 compares search strategies in terms of the four evaluation criteria set forth in
Section 3.3.2. This comparison is for tree-search versions. Tor graph searches, thc main
differences are that depth-first search is complete for finite state spaces and that the space and
time complexities are bounded by the size of the state space.

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited .Deepening (if applicable)
Complete? Yes® Yes®® No No Yes® Yes®d
Time o(?) OpHICdy o@p™) O@t) o@?) o@*7?)
Space oty oWty o®m) O(be) O(bd) o®?)
Optimal? Yes¢ Yes No No Yes® Yese:4
Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; ® complete if step costs > € for
positive ¢; © optimal if step costs are all identical; ¢ if both directions use breadth-first search.

92 Chapter 3. Solving Problems by Searching

3.5 INFORMED (HEURISTIC) SEARCH STRATEGIES - o

e 4 2

This section shows how an informed search strategy—onc that uses problem-specific know!-

INFORMED SEARCH
edge beyond the definition of the problem itself—can find solutions more efficiently than can

i~ an uninformed strategy.

BEST-FIRST SEARCH The general approach we consider is called best-first search. Best-first search is an !
i instance of the general TREE-SEARCH or GRAPH-SEARCH algorithm in which a node is i
[{r“- B selected for expansion based on an evaluation function, f(n). The evaluation function is

! construed as a cost estimate, S0 the node with the lowest evaluation is expanded first. The

implementation of best-first graph search is identical to that for uniform-cost search (Fig-

ure 3.14), except for the use of f instead of g 10 order the priority queue.
The choice of [determines the search strategy. (For example, as Exercise 3.21 shows,

best-first tree search includes depth-first search as 2 special case.) Most best-first algorithms

b include as a component of f a heuristic function, denoted h(n):
h(n) = estimated cost of the cheapest path from the state at node n to a goal state.

(Notice that h(n) takes a node as input, but, unlike g(n), it depends only on the state at that

node.) For example, in Romania, one might estimate the cost of the cheapest path from Arad

to Bucharest via the straight-line distance from Arad to Bucharest.
Heuristic functions are the most common form in which additional knowledge of the
problem is imparted to the search algorithm. We study heusistics in more depth in Section 3.6.
nonnegative, problem-speciﬁc functions, with one

For now, we consider them to be arbitrary,
constraint: if » is a goal node, then h(n)=0. The remainder of this section covers two ways

{0 use heuristic information to guide search.

3.5.1 Greedy best-first search

GREEDY BESTARST Greedy best-first search?® tries to expand the node that is closest to the goal, on the grounds
that this is likely to lead to a solution quickly. Thus, it evaluates nodes by using just the

heuristic function; that is, f(n) = h(n).
Let us see how this works for route-finding problems in Romania; we use the straight- 4

STRAIGHTLINE line distance heuristic, which we will call hgpp. If the goal is Bucharest, we need to

DISTANCE
know the straight-line distances to Bucharest, which are shown in Figure 3.22. For exam-

ple, hsrp(In(Arad)) = 366. Notice that the values of hgrp cannot be computed from the

problem description itself. Moreover, it takes a certain amount of experience o know that

hgyp is correlated with actual road distances and is, therefore, a useful heuristic. I

Figure 3.23 shows the progress of a greedy best-first search using hgpo to find a path
from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu because it
is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded will
be Fagaras because it is closest. Fagaras in turn generates Bucharest, which is the goal. For

this particular problem, greedy best-first search using hgrp finds 2 solution without ever

s
8 Qur first edition called this greedy search; other authors have called it best-first search. Our more general

|
usage of the latter term follows Pearl (1984).

lving Problems tly Searih_iig_

S I

S

hes

one that uses problem—speciﬁc knowl-
nd solutions more efficiently than can

{-first search. Best-first search is an
sARCH algorithm in which a nc?de is
ion, f(n). The evaluation function 18
vest evaluation is expanded first. T.he
to that for uniform-cost search (Fig-
tority queue.
Etlf(:n? exam};)lz, as Exercise 3.21 stilows,
secial case.) Most best-first algorithms

noted h(n):
m the state at node nto 2 goal state.

(m), it depends only on the state at that

the cost of the cheapest path from Arad
charest.

rtolr? :hich additional knowledgej of the

y heuristics in more depth i.n Sect19n 3.6.

ve, problem-speciﬁc functions, with one

.mainder of this section COVers two ways

{ to the goal, on the grounds

is closes
- ust the

hus, it evaluates nodes by using j

-oblems in Romania; we use the straight-
). If the goal is Bucharest, we need to
ich are shown in Figure 3.22. For exam-
es of hgp cannot be computed from the
ertain amount of experience to know that
s, therefore, a useful heuristic.
best-first search using hsLp to :
Janded from Arad will be Sibiu because.lii
soara. The next node to be expanded Wi

senerates Bucharest, which is the goal. For

find a path

i i ithout ever
using hsLp finds a solution Wi i

s have called it best-first search. Our

more gcﬂt‘-rﬂl i

Section 3.5.

A SEARCH

[nformed (Heuristic) Search Strategies 93
Arad 366 Mehadia 241
Bucharest 4] Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Lasi 226 Vaslui 199
Lugoj 244 Zerind 374
Figure 3.22 Values of hgrp—slraight-line distances to Bucharest.

expanding a node that is not on the solution path; hence, its search cost is minimal. It is
not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers longer
than the path through Rimnicu Vilcea and Pitesti. This shows why the algorithm is called
“greedy”—at each step it tries to get as close to the goal as it can.

Greedy best-first tree search is also incomplete even in a finite state space, much like
depth-first search. Consider the problem of getting from Iasi to Fagaras. The heuristic sug-
gests that Neamt be expanded first because it is closest to Fagaras, but it is a dead end. The
solution is to go first to Vaslui—a step that is actually farther from the goal according to
the heuristic—and then to continue to Urziceni, Bucharest, and Fagaras. The algorithm will
never find this solution, however, because expanding Neamt puts Iasi back into the frontier,
Tasi is closer to Fagaras than Vaslui is, and so Iasi will be expanded again, leading to an infi-
nite loop. (The graph search version is complete in finite spaces, but not in infinite ones.) The
worst-case time and space complexity for the tree version is O(b™), where m is the maximum
depth of the search space. With a good heuristic function, however, the complexity can be
reduced substantially. The amount of the reduction depends on the particular problem and on
the quality of the heuristic.

3.5.2 A* search: Minimizing the total estimated solution cost

The most widely known form of best-first search is called A* search (pronounced “A-star
search™). It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost
to get from the node to the goal:

f(n) = g(n) + h(n).

Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated cost
of the cheapest path from 7 to the goal, we have

f(n) = estimated cost of the cheapest solution through 7 .

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the
node with the lowest value of g(n) + h(n). It turns out that this strategy is more than just
reasonable: provided that the heuristic function h(n) satisfies certain conditions, A* search is
both complete and optimal. The algorithm is identical to UNIFORM-COST-SEARCH except
that A* uses g + h instead of g.

94

Chapter 3. Solving Problems by Searching

ADMISSIBLE
HEURISTIC

(a) The initial state BCand_D

(b) After expanding Arad

253 329 374

(c) After expanding Sibiu

Figure 3.23 Stagesina greedy best-first tree search for Bucharest with the straight-line
distance heuristic hspp. Nodes are labeled with their h-values.

Conditions for optimality: Admissibility and consistency

The first condition we require for optimality is that h(n) be am admissible heuristic. An
admissible heuristic is one that never overestimates the cost to reach the goal. Because g(n)
is the actual cost to reach n along the current path, and f(n)=g(n) + h(n), we have as an
immediate consequence that f(n) never overestimates the true cost of a solution along the
cutrent path through n.

Admissible heuristics are by nature optimistic because they think the cost of solving
the problem is less than it actually is. An obvious example of an admissible heuristic is the
straight-line distance hgrp that we used in getting to Bucharest. Straight-line distance is
admissible because the shortest path between any two points is a straight ling, so the straight

e

.

Solving Problems by_Sfar_cring

329 374

oD

iz

324 374

earch for Bucharest with the straight-line
ieir h-values.

nsistency

yat hi(n) be an admissible heuristic. AD
w the cost to reach the goal. Because y(n)

— gln) + h{n), wehave as an =
S e along the =8

nates the true cost of a solution

stic because they think the co g
s example of an admissible heuristic 1 3
ing to Bucharest. Straight-line distance I8

r two points is a straight

s the

st of solving

line, so the gtraight

Section 3.5.

Informed (Heuristic) Search Strategies 95

CONSISTENCY
MONOTONICITY

TRIANGLE
INEQUALITY

pL —
pe
J ‘J'q.r
i
e
f'o -
N

line cannot be an overestimate. In Figure 3.24, we show the progress of an A* tree search for
Bucharest. The values of g are computed from the step costs in Figure 3.2, and the values of
hspp are given in Figure 3.22. Notice in particular that Bucharest first appears on the frontier
at step (e), but it is not selected for expansion because its f-cost (450) is higher than that of
Pitesti (417). Another way to say this is that there might be a solution through Pitesti whose
cost is as low as 417, so the algorithm will not settle for a solution that costs 450.

A second, slightly stronger condition called consistency (or sometimes monotonicity)
is required only for applications of A* to graph search.’ A heuristic h(n) is consistent if, for
every node n and every successor n’ of n generated by any action a, the estimated cost of
reaching the goal from 7 is no greater than the step cost of getting to »' plus the estimated
cost of reaching the goal from n’:

h(n) < c(n,a,n’) + h(n').

This is a form of the general triangle inequality, which stipulates that each side of a triangle’
cannot be longer than the sum of the other two sides. Here, the triangle is formed by n, n’,
and the goal G,, closest to n. For an admissible heuristic, the inequality makes perfect sense:
if there were a route from n to G, via n' that was cheaper than h(n), that would violate the
property that 2(n) is a lower bound on the cost to reach Gi,.

It is fairly easy to show (Exercise 3.29) that every consistent heuristic is also admissible.
Consistency is therefore a stricter requirement than admissibility, but one has to work quite
hard to concoct heuristics that are admissible but not consistent. All the admissible heuristics
we discuss in this chapter are also consistent. Consider, for example, hsrp. We know that
the general triangle inequality is satisfied when each side is measured by the straight-line
distance and that the straight-line distance between n and n' is no greater than c(n, a,n’).
Hence, hspp is a consistent heuristic.

Optimality of A*

As we mentioned carlier, A* has the following properties: the tree-search version of A* is
optimal if h(n) is admissible, while the graph-search version is optimal if h(n) is consistent.

We show the second of these two claims since it is more useful. The argument es-
sentially mirrors the argument for the optimality of uniform-cost search, with g replaced by
f—just as in the A* algorithm itself.

The first step is to establish the following: if h(n) is consistent, then the values of
f(n) along any path are nondecreasing. The proof follows directly from the definition of
consistency. Suppose n’ is a successor of n; then g(n') = g(n) + ¢(n, ¢, n’) for some action
a, and we have

f(n') = g(n') + h(n') = g(n) + c(n, a,n') + h(n') 2 g(n) + h(n) = f(n) -

The next step is to prove that whenever A* selects a node n for expansion, the optimal path
10 that node has been found. Were this not the case, there would have to be another frontier
node n' on the optimal path from the start node to n, by the graph separation property of

With an admissible but inconsistent heuristic, A* requires some extra bookkeeping to ensure optimality.

96

(a) The initial state

(b) After expanding Arad

393=140+253

(c) After expanding Sibiu

646=2804366 415=239+176 67(=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

646=280+366

501=338+253 450=450+0

(f) After expanding Pitesti

C
501=338+253 450=450+0

Chapter 3. Solving Problems by Searching

366=0+366

447=118+329 449=75+374

447=118+329 449=75+374

449=75+374

449=75+374

526=366+160 417=317+100 553=300+253

449=154374

S26=3060+ 16

418=418+0 615=455+160 607=414+193

Figure 3.24 Stagesinan A* search for Bucharest. Nodes are labeled with f = g+ h. The
A values are the straight-line distances to Bucharest taken from Figure 3.22.

Solving Problems by Searching_

3

17=118+329 449=75+374
2 '.
B e "
147=118+329 449=75+374

447=118+329 449=T54374

i

00 553=3004253

447=118+329 449=75+374)

:

+100 553=300+253

447=118+329 449=75+374]

553=300+253
wa i Vil

5+160 607=414+193

«t. Nodes are labeled with f = g+ h. The
t taken from Figure 3.22.

-—

Section 3.5.

Informed (Heuristic) Search Strategies / 97

CONTOUR

Figure 3.25 Map of Romania showing contours at f = 380, f = 400, and f = 420, with
Arad as the start state. Nodes inside a given contour have f-costs less than or equal to the
contour value.

Figure 3.9; because f is nondecreasing along any path, n’ would have lower f-cost than n
and would have been selected first.

From the two preceding observations, it follows that the sequence of nodes expanded
by A* using GRAPH-SEARCH is in nondecreasing order of f{n). Hence, the first goal node
selected for expansion must be an optimal solution because f is the true cost for goal nodes
(which have h = 0) and all later goal nodes will be at least as expensive.

The fact that f-costs are nondecreasing along any path also means that we can draw
contours in the state space, just like the contours in a topographic map. Figure 3.25 shows
an example. Inside the contour labeled 400, all nodes have f(n) less than or equal to 400,
and so on. Then, because A* expands the frontier node of lowest f-cost, we can see that an
A* search fans out from the start node, adding nodes in concentric bands of increasing f-cost.

With uniform-cost search (A* search using h(n) = 0), the bands will be “circular”
around the start state. With more accurate heuristics, the bands will stretch toward the goal
state and become more narrowly focused around the optimal path. If C* is the cost of the
optimal solution path, then we can say the following:

e A* expands all nodes with f(n) < C*.
e A* might then expand some of the nodes right on the “goal contour” (where f(n) = C*)
before selecting a goal node.

Completeness requires that there be only finitely many nodes with cost less than or equal to
C*, a condition that is true if all step costs exceed some finite € and if b is finite.

Notice that A* expands no nodes with f(n) > C*—for example, Timisoara is not
expanded in Figure 3.24 even though it is a child of the root. We say that the subtree below

PRUNING

DPFTMALLY
EFFICIENT

ABSOLUTE ERROR

RELATIVE ERROR

Chapter 3. Solving Problems by Searching

can safely ignore this subtree

is admissible, the algorithm
possibilities from

ol pruning—climinutin-__-
ant for many areas of Al
lym—-;zlgnrithms that

"Timisoara is pruned: because hspn
while still guaranieeing optimality.
consideration without having Lo examine {hem—is import

One linal observation is that among optimal algorithms of this
om the root and use the same heutistic information— A is optimally
efficient for any given consistent heuristic. That is, no other optimal algorithm is guaran-
xcept possibly through tie-breaking among nodes with
xpand all nodes with f(n) < €7

The coneept

extend search paths fr

teed to expand fewer nodes than A" (e
fn)=0C"). This is because any algorithm that does not ¢
runs the risk of missing the optimal solution.

That A" search is complete, optimal, and optimally cfficient among all such algorithms
Unfortunately, it does not mean that A is the answer 10 all our searching
for most problems, the numiber ol states within the goal contour
the solution. The details of the analysis are

For problems with constanl

is rather satisfying.
needs, The catch is that,
till exponential in the length of

search space is s
resulis are as follows.

beyond the scope of this book, but the basic
step costs, the growth in run time as a function of the optimal solution depth d is analyzed in
terms of the the absolute error of (he relative error of the heuristic. The absolute error i5
defined as A = h* — Iy where fi* is the actual cost of getting from the root to the goal, and
the relative error is defined as € = (h* = h)/h".
The complexity resulls depend very strongly on the assumptions made about the state
e, The simplest model studied is a state space that has a single goal and 18 essentially a
tree with reversible actions. (The 8-puzzle satislics the first and third of these assumptions.)
In this case, the time complexity of A" 18 exponential in the maximum absolute error, that is,
O(b®). For constant step costs, we can write this as O(be"), where d is the solution depth.
For almost all heuristics in practical use, the absolute error is at least proportional 10 the path
cost h*, so ¢ is constant or growing and the time complexity is exponential in d. We can
also sec the effect of a more accurate heuristic: O(b4) = O((b* 14, so the effective branching
factor (defined more formally in the next section) is b°.
When the state space has many goal states—particularly near-optimal goal states—the
search process can be led astray from the optimal path and there is an extra cost proportional
to the number of goals whose cost is within a factor ¢ of the optimal cost. Finally, in the
general case of a graph, the situation is even worse. There can be exponentially many states
with f(n) < C7even if the absolute error is pounded by a constant. For example, consider
orld where the agenl can clean up any square for unit cost without
even having to visit it: in that case, squares can be cleancd in any order. With N initially dirty
N grates where some subset has been cleaned and all of them are on an
~ (*—even if the heuristic has an errar of 1.

spac

a version of the vacuum W

squares, therc are 2
optimal solution path—and hence satisfy [(n)

The complexity of A often makes it impractical
One can use variants of A" thal find suboptimal solutions quickly,
design heuristics {hat are more accurate but not strictly admissible. In any case, the use of 2
good heuristic still provides enormous gavings compared 10 the use of an uninformed search:

In Section 3.6, we look at the question of designing good hieuristics.
Computation time is not, however, A”'s main drawback, Because it keeps all gcnemwtl

nodes in memory (as do all GRAPH-SEARCH

Qr one can somelimes

1o insist on finding an optimal solution.

algorithms), A’ usually runs out of space 10n& '.

Solving Problems by iea_rc_hlig

ly ignore this subtree

gorithm can safe .
bilities from

ming—eliminating possi
ortant for many areas of AL

siithms of this type——algorithn'ls that
suristic information—A" is optimally
10 other optimal algorithm is guaran-
rough tie-breaking am(.)ng nodes wut:
not expand all nodes with f(n) < C

fficient among all such algorithms

. our searching

at A* is the answer (0 all
qber of states within the goal co.ntour
olution. The details of the analysis are
as follows. For problems with constar.\t
optimal solution depth d 18 analyzed in
¢ of the heuristic. The absolute error 18
of getting from the root to the goal, and

1 the assumptions made about th(? state

hat has a single goal and is essentlvglly a

the first and third of these assumptlons..)

1 in the maximum absolute err.or, that is,
1s O(b4), where d is the solution depth.
e error is at least proportional to the path
complexity is exponential i.n d. We (.:an
edli— O((b5)%), so the effective branching
3 b5

particularly near-

;ath ‘and there is an ex . :
stor € of the optimal cost. Finally, in the

5, There can be exponentially many states

ided by a constant. For example, cor.xsider
uare for unit cost without

up any s '
[clzl(;fr?:d '1[:1 anz o(rlder. With N initially dirty
s been cleaned and all of them are o0 an
C*—even if the heuristic has an error of 1.
jcal to insist on finding an optim: :
| solutions quickly, or one can sometimes
trictly admissible. In any c.ase, the use of 2
ympared to the use of an unin
ng good heuristics.

optimal goal states—.—the
tra cost propomonal

1
in drawback. Because it keeps all gcneruted s
gorithms), A" usually runs out of space 10nE: !

al solution. =

formed search- &

Section 3.5.

IERATIVE-
DEEPENING
A

Informed (Heuristic) Search Strategies 99

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem, MAKE-NODE(problem.INITIAL-STATE), 00)

function RBES(problem, node, f_limit) returns a solution, or failure and a new f-cost limit
it problem.GOAL-TEST(node.STATE) then return SOLUTION(n0de)
successors «— |]
for each action in problem.ACTIONS(node.STATE) do
add CHILD-NODE(problem, node, action) into successors
if successors is empty then return failure, co
for each s in successors do /* update f with value from previous search, if any */
s.f «-max(s.g + s.h, node.f))
loop do
best — the lowest f-value node in successors
if best.f > f.limit then return failure, best. f
alternative « the second-lowest f-value among successors
result, best. f «— RBES(problem, best, min(f_limit, alternative))
if result # failure then return result

Figure 3.26 The algorithm for recursive best-first search,

before it runs out of time. For this reason, A* is not practical for many large-scale prob-
lems. There are, however, algorithms that overcome the space problem without sacrificing
optimality or completeness, at a small cost in execution time. We discuss these next.

3.5.3 Memory-bounded heuristic search

The simplest way to reduce memory requirements for A* is to adapt the idea of iterative
deepening to the heuristic search context, resulting in the iterative-deepening A* (IDA®) al-
gorithm. The main difference between IDA* and standard iterative deepening is that the cutoff
used is the f-cost (g + k) rather than the depth; at each iteration, the cutoff value is the small-
est f-cost of any node that exceeded the cutoff on the previous iteration. IDA" is practical
for many problems with unit step costs and avoids the substantial overhead associated with
keeping a sorted queue of nodes. Unfortunately, it suffers from the same difficulties with real-
valued costs as does the iterative version of uniform-cost search described in Exercise 3.17.
This section briefly examines two other memory-bounded algorithms, called RBFS and MA".

Recursive best-first search (RBFS) is a simple recursive algorithm that attempts to
mimic the operation of standard best-first search, but using only linear space. The algorithm
is shown in Figure 3.26. Its structure is similar to that of a recursive depth-first search, but
rather than continuing indefinitely down the current path, it uses the f_limst variable to keep
track of the f-value of the best alternative path available from any ancestor of the current
node. If the current node exceeds this limit, the recursion unwinds back to the alternative
path. As the recursion unwinds, RBFS replaces the f-value of each node along the path
with a backed-up value—the best f-value of its children. In this way, RBFS remembers the
f-value of the best leaf in the forgotten subtree and can therefore decide whether it’s worth

100 Chapter 3. Solving Problems by Searching |

(a) After expanding Arad, Sibiu, =l
and Rimnicu Vilcea X

449

q-'-'-ﬂ‘_.'b’-‘a 13
646 415 671 2
320 a1 553
(b) After unwinding back to Sibiu i
CAmd D34

and expanding Fagaras

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

Figure 3.27 Stages in an RBFS search for the shortest route to Bucharest. The f-limit
value for each recursive call is shown on top of each current node, and every node is labeled
. with its f-cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti)

has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds
and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then
Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the
best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is
expanded. This time, because the best alternative path (through Timisoara) costs at least 447,

the expansion continues to Bucharest.

gure 3.27 shows how RBFS reaches Bucharest.
but still suffers from excessive node re-
the path via Rimnicu Vilcea, then

reexpanding the sublree at some later time. Fi
RBFES is somewhal more efficient than IDA?,

generation. In the example in Figure 3.27, RBFS follows

Solving Problems_by_SFe_archin g

449

shortest route to Bucharest. The f-limit
ch current node, and every node is lapele'd
followed until the current best leaf (Pm'asu)
path (Fagaras). (b) The recursiop unwinds
117) is backed up to Rimnicu Y1lcea; then
5f 450. (c) The recursion unwx.nds and th'e
«cked up to Fagaras; then Rimnicu Vilcea 18
path (through Timisoara) costs at least 447,

¢ 3.27 shows how RBFS reache§ Bu .
A%, but still suffers from excessw§ node T _.
S follows the path via Rimnicu Vilcea,

charest.

Section 3.5.

Informed (Heuristic) Search Strategies 10l

MA*
SMA

“changes its mind” and tries Fagaras, and then changes its mind back again. These mind
changes occur because every time the current best path is extended, its f-value is likely to
increase—h is usually less optimistic for nodes closer to the goal. When this happens, the
second-best path might become the best path, so the search has to backtrack to follow it.
Bach mind change corresponds to an iteration of IDA* and could require many reexpansions
of forgotten nodes to recreate the best path and extend it one more node.

Like A* trec search, RBFS is an optimal algorithm if the heuristic function h(n) is
admissible. Its space complexity is linear in the depth of the deepest optimal solution, but
its time complexity is rather difficult to characterize: it depends both on the accuracy of the
heuristic function and on how often the best path changes as nodes are expanded.

IDA* and RBFS suffer from using too little memory. Between iterations, IDA" retains
only a single number: the current f-cost limit. RBFS retains more information in memory,
but it uses only linear space: even if more memory were available, RBFS has no way to make
use of it. Because they forget most of what they have done, both algorithms may end up reex-
panding the same states many times over. Furthermore, they suffer the potentially exponential
increase in complexity associated with redundant paths in graphs (see Section 3.3).

It seems sensible, therefore, to use all available memory. Two algorithms that do this
are MA* (memory-bounded A*) and SMA* (simplified MAY). SMA* is—well—simpler, so
we will describe it. SMA* proceeds just like A%, expanding the best leaf until memory is full.
At this point, it cannot add a new node to the search tree without dropping an old one. SMA*
always drops the worst leaf node—the one with the highest f-value. Like RBFS, SMA"
then backs up the value of the forgotten node to its parent. In this way, the ancestor of a
forgotten subtree knows the quality of the best path in that subtree. With this information,
SMA* regenerates the subtree only when all other paths have been shown to look worse than
the path it has forgotten. Another way of saying this is that, if all the descendants of anode n
are forgotten, then we will not know which way to go from n, but we will still have an idea
of how worthwhile it is to go anywhere from 7.

The complete algorithm is too complicated to reproduce here,1® but there is one subtlety
worth mentioning. We said that SMA* expands the best leaf and deletes the worst leaf. What
if all the leaf nodes have the same f-value? To avoid selecting the same node for deletion
and expansion, SMA* expands the newest best leaf and deletes the oldest worst leaf. These
coincide when there is only one leaf, but in that case, the current search tree must be a single
path from root to leaf that fills all of memory. If the leaf is not a goal node, then even if it is on
an optimal solution path, that solution is not reachable with the available memory. Therefore,
the node can be discarded exactly as if it had no successors.

SMA* is complete if there is any reachable solution—that is, if d, the depth of the
shallowest goal node, is less than the memory size (expressed in nodes). It is optimal if any
optimal solution is reachable; otherwise, it returns the best reachable solution. In practical
terms, SMA* is a fairly robust choice for finding optimal solutions, particularly when the state
space is a graph, step costs are not uniform, and node generation is expensive compared to
the overhead of maintaining the frontier and the explored set.

1% A rough sketch appeared in the first edition of this book.

102 Chapter 3. Solving Problems by Searching
On very hard problems, however, it will often be the case that SMA* is forced to switch

back and forth continually among many candidate solution paths, only a small subset of which

THRASHING can fit in memory. (This resembles the problem of thrashing in disk paging systems.) Then
odes means that problems

the extra time required for repeated regeneration of the same n
that would be practically solvable by A®, given unlimited memory, become intractable for
EL/é: SGMA*. That is to say, memory limitations can make a problem intractable from the point

of view of computation time. Although no current theory explains the tradeoff between time

and memory, it seems that this is an inescapable problem. The only way out is t0 drop the
optimality requirement.

3.5.4 Learning to search better

greedy best-first, and sO on—that
t learn how (O search better? The
sts on an important concept called the metalevel state space.
aptures the internal (computational) state of a program
ace such as Romania. For example, the internal
¢. Bach action in the metalevel staie
for example, each computation step
e 3.24, which shows
\th in the metalevel

We have presented several fixed strategies———breadth-ﬁrst,
have been designed by computer scientists. Could an agen
METWRVELSWE answer is yes, and the method re
Each state in a metalevel state space ©
OBIECTLEVELSTATE that is searching in an object-level state sp
state of the A algorithm consists of the current search tre
space is & computation step that alters the internal state:
in A" expands a leal node and adds its successors to the tree, Thus, Figur
a sequence of larger can be seen as depicting a pe

state space where each state on the path is an object-level search tree.
Now, the path in Figure 3.24 has five steps, including one step, the expansion of Fagaras,
harder problems, there will be many such missteps, and a
from these experiences (o avoid exploring Unpromis-
described in Chapter 21. The
trading off computational

and larger search trees,

that is not especially belpful. For

G metalevel learning algorithm can learn
ing subtrees. The techniques used for this kind of learning are

goal of learning is to minimize the total cost of problem solving,

expense and path cost.

3.6 HEURISTIC FUNCTIONS

In this section, we look at heuristics for the g-puzzle, in order to shed light on the nature of

heuristics in general.

The 8-puzzle was one of
tion 3.2, the object of the puzz
space until the configuration matc

roblems. As mentioned in Sec-

the earliest heuristic search p
ily or vertically into the empty

le is to slide the tiles horizonta
hes the goal configuration (Figure 3.28).

The average solution cost for a randomly generated 8-puzzle instance is about 22 steps.
The branching factor is about 3. (When the empty tile is in the middle, four moves are
possible; when it is in a corner, Wo; and when it is along an edge, three.) This means
that an exhaustive tree search 1o depth 22 would look at about 32 = 3.1 %101 states.
A graph search would cut this down by a factor of about 170,000 because only 9!/2 =
181,440 distinct states are reachable, (See Exercise 3.4) Thisis a manageable number, but

Solving Problems by Searching Section 3.6. Heuristic Functions .
olvi Section 36, Heuristic - - e

* is forced to switch
e case that SMA® 1 f which ; ; - 1 2
m paths, only 2 small subset O
shing in disk paging systems.) Then
e saime nodes means that problems . - 3 ==
ted memory, become intractable for |]
1 problem intractable from the p(_)mt ; 3 I 6 : 8
ry explains the tradeoff between Ume 3
em. The only way out is to drop the . Il

Figure 3.28 A typical instance of the 8-puzzle. The solution is 26 steps long.

the corresponding number for the 15-puzzle is roughly 1013, so the next order of business is
to find a good heuristic function. If we want to find the shortest solutions by using A*, we
need a heuristic function that never overestimates the number of steps to the goal. There is a
long history of such heuristics for the 15-puzzle; here are two commonly used candidates:

irst, greedy best-first, and s0 on—;s&z:t
agent learn how to search better? 1he
ncept called the metalevel state space.
-nal (computational) state of 2 p.rogran;
as Romania. For example, the ntema
e. Bach action in the metalevel state
computation step
24, which shows
n the metalevel

e h; = the number of misplaced tiles. For Figure 3.28, all of the eight tiles are out of
position, so the start state would have h; = 8. hy is an admissible heuristic because it
is clear that any tile that is out of place must be moved at least once.

e hy = the sum of the distances of the tiles from their goal positions. Because tiles
cannot move along diagonals, the distance we will count is the sum of the horizontal
and vertical distances. This is sometimes called the city block distance or Manhattan

AL ATIN distance. hs is also admissible because all any move can do is move one tile one step
closer to the goal. Tiles 1 to 8 in the start state give a Manhattan distance of

hy=34+1+24+2+2+3+3+2=18.

As expected, neither of these overestimates the true solution cost, which is 26.

| tres
te; for example, each
he tree. Thus, Figure 3 .
een as depicting 2 path 1
level search tree.

ading one step, the expansio
there will be many such n}lssteps, ‘
:xperiences to avoid exploring unpromis-

sarming are described in Chapter 21.' The
Jhlem solving, trading off computational

ion of Fagaras,
and a

3.6.1 The effect of heuristic accuracy on performance

One way to characterize the quality of a heuristic is the effective branching factor b*. If the
total number of nodes generated by A* for a particular problem is N and the solution depth is
d, then b* is the branching factor that a uniform tree of depth d would have to have in order
to contain N + 1 nodes. Thus,
NA41=14b4)2+ + (")~
For example, if A* finds a solution at depth 5 using 52 nodes, then the effective branching
factor is 1.92. The effective branching factor can vary across problem instances, but usually
it is fairly constant for sufficiently hard problems. (The existence of an effective branching
factor follows from the result, mentioned earlier, that the number of nodes expanded by A*
grows exponentially with solution depth.) Therefore, experimental measurements of b* on a
small set of problems can provide a good guide to the heuristic’s overall usefulness. A well-
- designed heuristic would have a value of b* close to 1, allowing fairly large problems to be
solved at reasonable computational cost.

R

Zle, in order to shed light on the nature of |

s mentioned ift Sec- &

ic search problems. A b,

»g horizontally or vertically into the €

igurati Hgure 3.28). :
figuration (Figure 3 . "
nerated 8-puzzle instance 18 about 22 ~lcp:b _
apty tile is in the middle, four m‘(wc.s :ﬂq]
1 it is along an edge, three.) l"hﬁ-] rflcw‘;- :
1d look at about 322~ 3.1%10 (;:1;3, ;
about 170,000 because only @ o

or of _
able numben

sise 3.4.) This is a manage

104

L3 Ll

b

DOMINATION

Chapter 3. Solving Problems by Searching i

To test the heuristic functions hy and hy, we generated 1200 random problems with
solution lengths from 2 to 24 (100 for each even number) and solved them with iterative
deepening search and with A® tree search using both h; and hy. Figure 3.29 gives the average
number of nodes generated by each strategy and the effective branching factor. The results .
suggest that hg is better than hy, and is far better than using iterative deepening search. Even '
for small problems with d=12, A” with hs is 50,000 times more efficient than uninformed ‘

iterative deepening search.
[Search Cost (nodes generated) Effective Branching Factor
d IDS Ar(hy) A*(ho) IDS A(hy) A*(hg)
2 10 6 6 2.45 179 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30 i
8 6384 39 25 2.80 1.33 1.24 |
10 47127 93 39 2.79 1.38 1.22 3
12 || 3644035 227 73 218 1.42 1.24
14 - 539 113 - 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26
Figure 3.29 Comparison of the search costs and effective branching factors for the
ITERATIVE-DEEPENING-SEARCH and A’ algorithms with hy, he. Data are averaged over
100 instances of the 8-puzzle for each of various solution lengths d.

One might ask whether hg is always better than h;. The answer is “Essentially, yes.” It
is easy to see from the definitions of the two heuristics that, for any node n, ha(n) > hy(n).
We thus say that ho dominates h;. Domination translates dircetly into efficiency: A* using
hs will never expand more nodes than A¥ using h1 (except possibly for some nodes with
f{n)=C*). The argument is simple. Recall the observation on page 97 that every node
with f(n) < C* will surely be expanded. This is the same as saying that every node with
h(n) < C* — g(n) will surely be expanded. But because hso is at least as big as hy for all
nodes, every node that is surely expanded by A" search with ho will also surely be expanded
with ki, and ki might cause other nodes to be expanded as well. Hence, it is generally
better to use a heuristic function with higher values, provided it is consistent and that the
computation time for the heuristic is not too long.

3.6.2 Generating admissible heuristics from relaxed problems

We have seen that both hy (misplaced tiles) and ho (Manhattan distance) are fairly good
heuristics for the 8-puzzle and that hy is better. How might one have come up with ho? Isit
possible for a computer to invent such a heuristic mechanically?

hy and hy are estimates of the remaining path length for the 8-puzzle, but they are also
perfectly accurate path lengths for simplified versions of the puzzle. If the rules of the puzzle &

Solving Problems E)_/_Searchi_n%

perated 1200 random pmhlcms w.slh
mber) and solved them with iterative
3.29 gives the average
The results

and ha. Figure
“ffective branching factor.
using ierative deepening scuth: Even
| Limés more efficient than uninformed

Eff_ect_ivzianching Factor

DS A(h) _Aihz)
245 1.79 1.79
2.87 1.48 1.45
273 1.34 1.30
2.80 1.33 1.24
2.79 1.38 1.22
2.78 1.42 1.24
1.44 1.23
1.45 1.25
1.46 1.26
147 1.27
1.48 1.28
__ 1.48 1.26

and effective branching factors for the
ms with hi, he. Data are averaged over
lution lengths d.

an hy. The answer is “Egsentially, yes.” It
stics that, for any node 7, ho(n) 2 M (n)
ranslates directly into efficiency: A" usg\g
hi1 (except possibly for some nodes with
> observation on page 97 that every n0fic
< the same as saying that every node with
t because ho is at least as big as hy for all
earch with ho will also surely be expanded
expanded as well. Hence, it is generally
lues, provided it is consistent and that the

-om relaxed problems

\d hg (Maphattan distance) are fairly good

How might one have come up with ha? 18102

> mechanically? -
yath length for the 8-puzzle, but they are 41>
sions of the puzzle.

If the rules of the puzzie S

Section 3.6.

Heuristic Functions 105

RELAXED PROBLEM

were changed so that a tile could move anywhere instead of just to the adjacent empty square,
then k; would give the exact number of steps in the shortest solution. Similarly, if a tile could
move one square in any direction, even onto an occupied square, then hy would give the exact
number of steps in the shortest solution. A problem with fewer restrictions on the actions is
called a relaxed problem. The state-space graph of the relaxed problem is a supergraph of
the original state space because the removal of restrictions creates added edges in the graph.

Because the relaxed problem adds edges to the state space, any optimal solution in the
original problem is, by definition, also a solution in the relaxed problem; but the relaxed
problem may have better solutions if the added edges provide short cuts. Hence, the cost of
an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
Furthermore, because the derived heuristic is an exact cost for the relaxed problem, it must
obey the triangle inequality and is therefore consistent (see page 95).

If a problem definition is written down in a formal language, it is possible to construct
relaxed problems automatically.!! For example, if the 8-puzzle actions are described as

A tile can move from square A to square B if
A is horizontally or vertically adjacent to B and B is blank,

we can generate three relaxed problems by removing one or both of the conditions:

(a) A tile can move from square A to square B if A is adjacent to B.
(b) A tile can move from square A to square B if B is blank.
(c) A tile can move from square A to square B.

From (a), we can derive hy (Manhattan distance). The reasoning is that ho would be the
proper score if we moved each tile in turn to its destination. The heuristic derived from (b) is
discussed in Exercise 3.31. From (c), we can derive h1 (misplaced tiles) because it would be
the proper score if tiles could move to their intended destination in one step. Notice that it is
crucial that the relaxed problems generated by this technique can be solved essentially without
search, because the relaxed rules allow the problem to be decomposed into eight independent
subproblems. If the relaxed problem is hard to solve, then the values of the corresponding
heuristic will be expensive to obtain. 12

A program called ABSOLVER can generate heuristics automatically from problem def-
initions, using the “relaxed problem” method and various other techniques (Prieditis, 1993).
ABSOLVER generated a new heuristic for the 8-puzzle that was better than any preexisting
heuristic and found the first useful heuristic for the famous Rubik’s Cube puzzle.

One problem with generating new heuristic functions s that one often fails to get a
single “clearly best” heuristic. If a collection of admissible heuristics hy ... hy, is available
for a problem and none of them dominates any of the others, which should we choose? As it
turns out, we need not make a choice. We can have the best of all worlds, by defining

h(n) = max{hi(n),..., hm(n)} -

1 In Chapters 8 and 10, we describe formal languages suitable for this task; with formal descriptions that can be
manipulated, the construction of relaxed problems can be automated. For now, we use English.

12 Note that a perfect heuristic can be obtained simply by allowing A to run a full breadth-first search “on the
sly”” Thus, there is a tradeoff between accuracy and computation time for heuristic functions.

SUBPROBLEM

PATTERN DATABASE

Chapter 3. Solving Problems by Searching

[a|
D
OB

Start State

-]
-
an

ana|

[+]|L-
Goal State

L]

Figure 3.30 A subproblem of the 8-puzzle instance given in Figure 3.28. The task is to
get tiles 1, 2, 3, and 4 into their correct positions, without worrying about what happens to

the other tiles.

is most accurate on the node in question.

This composite heuristic uses whichever function
h is admissible; it is also easy to prove that

Because the component heuristics are admissible,
h is consistent. Furthermore, b dominates all of its component heuristics.

3.6.3 Generating admissible heuristics from subproblems: Pattern databases

m the solution cost of a subproblem of a given

Admissible heuristics can also be derived fro
lem of the 8-puzzle instance in Fig-

problem. For example, Figure 3.30 shows a subprob
ure 3.28. The subproblem involves getting tiles 1, 2, 3, 4 into their correct positions. Clearly,
the cost of the optimal solution of this subproblem is a lower bound on the cost of the com-
plete problem. It turns out (o be more accurate than Manhattan distance in some cases.

The idea behind pattern databases is to store these exact solution costs for every pos-
sible subproblem instance—in our example, every possible configuration of the four tiles
and the blank. (The locations of the other four tiles are irrelevant for the purposes of solv-
ing the subproblem, but moves of those tiles do count toward the cost.) Then we compute
an admissible heuristic hpp for each complete state encountered during a search simply by
g subproblem configuration in the database. The database itself is
constructed by searching back!? from the goal and recording the cost of each new pattern en-
countered; the expense of this search is amortized over many subsequent problem instances.

The choice of 1-2-3-4 is fairly arbitrary: we could also construct databases for 5-6-7-8,
for 2-4-6-8, and so on. Each database yields an admissible heuristic, and these heuristics can
be combined, as explained earlier, by taking the maximum value. A combined heuristic of
this kind is much more accurate than the Manhattan distance; the number of nodes generated
when solving random 15-puzzles can be reduced by a factor of 1000.

One might wonder whether the heuristics obtained from the 1-2-3-4 database and the
5.6-7-8 could be added, since the two subproblems seem not to overlap. Would this still give
an admissible heuristic? The answer is no, because the solutions of the 1-2-3-4 subproblem
and the 5-6-7-8 subproblem for a given state will almost certainly share some moves—it is

looking up the correspondin,

on cost of every instance encountered is immediately

13 By working backward from the goal, the exact soluti
which we discuss further in Chapter 17.

available. This is an example of dynamic programming,

|

Solving Problems by Searchi_ng

I——

oo
[+]f]

Goal State

n Figure 3.28. The task is to

- given i
t happens to

Jout worrying about wha

-

108t accurate on the node in question.

admissible; it is also easy to prove that
nponent heuristics.

subproblems: Pattern databases

lution cost of a subprablem of a giY.en
blem of the 8-puzzle instance in Fig-

i, 4 into their correct positions. Clearly,

a lower bound on the cost of the com-
fanhattan distance in some cases.

hese exact solution costs for every pos-
possible configuration of the four tiles
are irrelevant for the purposes of solv-
int toward the cost.) Then we compute
encountered during a search simply by
on in the database. The database itself is
«cording the cost of each new pattern en-
rer many subsequent problem instances.
uld also construct databases for 5-6-7-8,
issible heuristic, and these heuristics czm.
aximum value. A combined heuristic of
distance; the number of nodes generated
a factor of 1000.

dined from the 1-2-3-4 database and the
seem not to overlap. Would this still give
s the solutions of the 1-2-3-4 suhpmbllmln
almost certainly share some moves—it 13

:ost of every instance encountered is immediately
ch we discuss further in Chapter 17.

S ——— =

Section 3.6.

DISJOINT PATTERN
DATABASES

FEATURE

Heunstic Functions 107

unlikely that 1-2-3-4 can be moved into place without touching 5-6-7-8, and vice versa. But
what if we don’t count those moves? That is, we record not the total cost of solving the 1-2-
3-4 subproblem, but just the number of moves involving 1-2-3-4. Then it is easy to see that
the sum of the two costs is still a lower bound on the cost of solving the entire problem. This
is the idea behind disjoint pattern databases. With such databases, it is possible to solve
random 15-puzzles in a few milliseconds—the number of nodes generated is reduced by a
factor of 10,000 compared with the use of Manhattan distance. For 24-puzzles, a speedup of
roughly a factor of a million can be obtained.

Disjoint pattern databases work for sliding-tile puzzles because the problem can be
divided up in such a way that each move affects only one subproblem—because only one tile
is moved at a time. For a problem such as Rubik’s Cube, this kind of subdivision is difficult
because each move affects 8 or 9 of the 26 cubies. More general ways of defining additive,
admissible heuristics have been proposed that do apply to Rubik’s cube (Yang et al., 2008),
but they have not yielded a heuristic better than the best nonadditive heuristic for the problem.

3.6.4 Learning heuristics from experience

A heuristic function h(n) is supposed to estimate the cost of a solution beginning from the
state at node . How could an agent construct such a function? One solution was given in
the preceding sections—namely, to devise relaxed problems for which an optimal solution
can be found easily. Another solution is to learn from experience. “Experience” here means
solving lots of 8-puzzles, for instance. Each optimal solution to an 8-puzzle problem provides
examples from which A{n) can be learned. Each example consists of a state from the solu-
tion path and the actual cost of the solution from that point. From these examples, a learning
algorithm can be used to construct a function k(n) that can (with luck) predict solution costs
for other states that arise during search. Techniques for doing just this using neural nets, de-
cision trees, and other methods are demonstrated in Chapter 18. (The reinforcement leaming
methods described in Chapter 21 are also applicable.)

Inductive learning methods work best when supplied with features of a state that are
relevant to predicting the state’s value, rather than with just the raw state description. For
example, the feature “number of misplaced tiles” might be helpful in predicting the actual
distance of a state from the goal. Let’s call this feature z;(n). We could take 100 randomly
generated 8-puzzle configurations and gather statistics on their actual solution costs. We
might find that when z1(n) is 5, the average solution cost is around 14, and so on. Given
these data, the value of 1 can be used to predict A(n). Of course, we can use several features.
A second feature z2(n) might be “number of pairs of adjacent tiles that are not adjacent in the
goal state.” How should z;(n) and z2(n) be combined to predict 4(n)? A common approach
is to use a linear combination:

h(n) = c1z1(n) + cpz2(n) -
The constants ¢, and c; are adjusted to give the best fit to the actual data on solution costs.
One expects both ¢; and ¢y to be positive because misplaced tiles and incorrect adjacent pairs

make the problem harder to splve. Notice that this heuristic does satisfy the condition that
h(n) =0 for goal states, but it is not necessarily admissible or consistent.

108 Chapter 3. Solving Problems by Searching

3.7 SUMMARY I
actions in environments

that an agent can use {0 select
ases, the agent.can

tic, and completely known. In suche
rocess is called search.

This chapter has introduced methods
that are deterministic, observable, sta
construct sequences of actions (it achieve its goals; this p

e Before an agent can start searching for solutions, a goal must be identified and a well-

defined problem must be formulated.
e A problem consists of five parts: the initial state, a set of actions, a transition model
describing the results of those actions, a goal fest function, and 2 path cost function.
The environment of the problem is represented by a state space. A path through the

state space from the initial state to a goal state is a solution.
y do not consider any internal

Search algorithms treat states and actions as atomic: the

structure they might possess.

o A general TREE-SEARCH algorithm considers all possible paths to find a solution,
whereas a GRAPH-SEARCH algorithm avoids consideration of redundant paths.

o Search algorithms are judged on the basis of completeness, optimality, time complex-

ity, and space complexity. Complexity depends on b, the branching factor in the state

space, and d, the depth of the shallowest solution.

o Uninformed search methods have access only to the problem definition. The basic

algorithms are as follows:
_ Breadth-first search expands the shallowest nodes first; it is complete,
for unit step costs, but has exponential space complexity.
_ Uniform-cost search expands the node with lowest path cost, g(n), and is optimal

for general step costs.

~ Depth-first search expands the deepest unexpanded n
plete nor optimal, but has linear space complexity. De
depth bound.

_ Tterative deepening search calls depth-
until a goal is found. 1t is complete, optimal for unit step costs, has time complexity
comparable to breadth-first search, and has linear space complexity.

usly reduce time complexity, but it is not always

optimal

ode first. It is neither com-
pth-limited search adds a

first search with increasing depth limits

— Bidirectional search can enormo
applicable and may require too much space.

o Informed search methods may have access (o 2 heuristic function h(n) that estimates

the cost of a solution from 7.

earch algorithm selects a node for expansion according o

— The generic best-first s
an evaluation function.

~ Greedy best-first search expands nodes with mini

is often efficient.

mal h(n). It is not optimal but

Solving Problems b_yieircfu_ué

I — e

use to select actions in environments

y known. In such cases, the agent can
(is process 1 called search.

a goal must be identified and 2 well-

ctions, 2 transition model

il h cost function
sst function, and a path cos .
ey th through the

by a state space. A pal
; a solution. .
ymic: they do not consider any internal

s all possible paths to find a solution,

.onsideration of redundant paths.

ness, optimality, time complex-

mplete .
g factor in the state

ds on b, the branching
on. .
ly to the problem definition. The basic
ywest nodes first; it is complete, optimal
yace complexity.

vith lowest path cost, g(n), and is optimal

d node first. It is neither com-

unexpande ‘
e Depth-limited search adds 2

somplexity.

a-first search with increasing depth lim_lts
mal for unit step costs, has time complexity

has linear space complexity.

-educe time complexity, but it is not always
pace.

: to a heuristic function h(n) that estimates

. —_—
m selects a node for expansion according

jes with minimal h(n). It is not optimal

hut

Bibliographical and Historical Notes

109

— A* search expands nodes with minimal f(n) = g(n) + h(n). A* is complete and
optimal, provided that h(n) is admissible (for TREE-SEARCH) or consistent (for
GRAPH-SEARCH). The space complexity of A is still prohibitive.

— RBFS (recursive best-first search) and SMA* (simplified memory-bounded A*)
are robust, optimal search algorithms that use limited amounts of memory; given
enough time, they can solve problems that A* cannot solve because it runs out of
memory.

e The performance of heuristic search algorithms depends on the quality of the heuristic
function. One can sometimes construct good heuristics by relaxing the problem defi-
nition, by storing precomputed solution costs for subproblems in a pattern database, or
by learning from experience with the problem class.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The topic of state-space search originated in more or less its current form in the early years of
AL Newell and Simon’s work on the Logic Theorist (1957) and GPS (1961) led to the estab-
lishment of search algorithms as the primary weapons in the armory of 1960s Al researchers
and to the establishment of problem solving as the canonical Al task. Work in operations
research by Richard Bellman (1957) showed the importance of additive path costs in sim-
plifying optimization algorithms. The text on Automated Problem Solving by Nils Nilsson
(1971) established the area on a solid theoretical footing.

Most of the state-space search problems analyzed in this chapter have a long history
in the literature and are less trivial than they might seem. The missionaries and cannibals
problem used in Exercise 3.9 was analyzed in detail by Amarel (1968). It had been consid-
ered earlier—in Al by Simon and Newell (1961) and in operations research by Bellman and
Dreyfus (1962).

The 8-puzzle is a smaller cousin of the 15-puzzle, whose history is recounted at length
by Slocum and Sonneveld (2006). It was widely believed to have been invented by the fa-
mous American game designer Sam Loyd, based on his claims to that effect from 1891 on-
ward (Loyd, 1959). Actually it was invented by Noyes Chapman, a postmaster in Canastota,
New York, in the mid-1870s. (Chapman was unable to patent his invention, as a generic
patent covering sliding blocks with letters, numbers, or pictures was granted to Ernest Kinsey
in 1878.) It quickly attracted the attention of the public and of mathematicians (Johnson and
Story, 1879; Tait, 1880). The editors of the American Journal of Mathematics stated, “The
‘15’ puzzle for the last few weeks has been prominently before the American public, and may
safely be said to have engaged the attention of nine out of ten persons of both sexes and all
ages and conditions of the community.” Ratner and Warmuth (1986) showed that the general
n X n version of the 15-puzzle belongs to the class of NP-complete problems.

The 8-queens problem was first published anonymously in the German chess maga-
zine Schach in 1848; it was later attributed to one Max Bezzel. It was republished in 18350
and at that time drew the attention of the eminent mathematician Carl Friedrich Gauss, who

Chapter 3. Solving Problems by Searching

110

possible solutions; initially he found only 72, but eventually be

f 92, although Nauck published all 92 solutions first, in 1850.
ns, and Abramson and Yung (1989) found an

attempled to enumerate all
found the correct answer O
Netto (1901) generalized the problem to 7 quee
O)(n) algorithm.

Each of the real-world search problems listed in the chapter has been the subject of a !
good deal of research effort. Methods for selecting vptimal airline flights remain proprietary
for the most part, but € atl de Marcken (personal com munication) has shown that airline ticket
become so convoluted that the problem of selecting an optimal
The traveling-salesperson problem is 1 standard combinato-
(Lawler et al., 1992). Karp (1972) proved the |
roximation methods were developed (Lin and 4
approximation scheme for Bu-

pricing and restrictions have
flight is formally undecidable.
rial problem in theoretical computer science
TSP to be NP-hard, but effective heuristic app!
Kernighan, 1973). Arora (1998) devised a fully polynomial
clidean TSPs. VLSI layoul methods are surveyed by Shahookar and Mazumder (1991), and
many layout optimization papets appear in VL3I journals. Robotic pavigation and assembly .]
problems are discussed in Chapter 25.

Uninformed search algorithms for problem solvin
puler science (Horowitz and Qahni, 1978) and operations 1ese
first search was formulated for solving mazes by Moore (1959), The method of dynamic
programming (Bellman, 1957; Bellman and Dreyfus, 1962), which systematically records
solutions for all subproblems of increasing lengths, can be seen as i form of breadth-first
search on graphs. The two-point shortest-path algorithm of Dijkstra (1959) is the origin
These works also introduced the idea of explored and frontier sels

g are a central topic of classical com-
arch (Dreyfus, 1969). Breadth-

of uniform-cost search.
(closed and open lists).
A version of iterative deepening designed to m
first used by Slate and Atkin (1977) in the CHESS 4.5 gam
algorithm B (1977) includes an iterative deepening aspect and also dominates A™'s WorsL-case
performance with admissible but inconsistent heuristics. The iterative deepening technique
came to the fore in work by Korf (1985a). Bidirectional search, which was introduced by
Pohl (1971), can also be elfective in some cases.
The use of heuristic information in problem solving appears in an early paper by Simon
and Newell (1958), but the phrase “heuristic search” and the use of heuristic functions that
estimate the distance to the goal came somewhat later (Newell and Ernst, 1965; Lin, 1965).
Doran and Michie (1966) conducted extensive experimental studies of heuristic search. Al-
though they analyzed path length and “penetrance” (the ratio of path length to the total num-
ber of nodes examined so far), they appear to have ignored the information provided by the
path cost g{n). The A" algorithm, incorporating the current path cost into heuristic search,
was developed by Hart, Nilsson, and Raphael (1968), with some later corrections (Hart ef al.,
1972). Dechter and Pearl (1985) demonstrated the optimal elficiency of A"

The original A” paper introduced the consistency condition on heuristic functions. The
monotone condition was introduced by Pohl (1977) asa simpler replacement, but Pearl (1984)
showed that the two were equivalent.

Pohl (1977) pioneered the study o
tions and (he time complexity of A", Basic resu

ake efficient use of the chess clock was
e-playing programm. Martelli’s

SR SN

f the relationship between the error in heuristic func-
Its were obtained for tree search with unit step

Solving Problems by S_earching_

/ he found only 72, but eventually he
lisned all 92 solutions first, in 1850.
. Abramson and Yung (1989) found an

. the chapter has been the subjec.t of a
timal airline flights remain prf)pne.:tary
\unication) has shown that airline tlf:ket
\at the problem of selecting an oanal
rson problem is 2 standard combinato-
et al., 1992). Karp (1972) prov'ed the
{tion methods were developed (Lin and
ynomial approximation scheme for Eu-
Shahookar and Mazumder (1991), and
(nals. Robotic navigation and assembly

ying are a central topic of classical com-
jons research (Dreyfus, 1969). Breadt}}-
foore (1959). The method of dynamic
us, 1962), which systematically records

can be seen as a form of breadth-f;r.st
;orithm of Dijkstra (1959) is the. origin
;d the idea of explored and frontier sets

nake efficient use of the chess clock w.a}s
s 4.5 game-playing program. Martelli’s
aspect and also dominates Af 's wnrsl.-s.:ase
igtics. The iterative deepening technique
wctional search, which was introduced by

olving appears in an early paper b.y Simon

+h” and the use of heuristic functions that

later (Newell and Emst, 1965; Lin, 1965).

perimental studies of heuristic search. Al-

" (the ratio of path length to the total num-

« ignored the information prnvidf:d by l.he
the current path cost into heuristic search,
38), with some later corrections (Hart ef al.,
» optimal efficiency of A" P
tency condition on heuristic functions. o
1) as a simpler replacement, but Pearl (19

. o o
tionship between the error in heunstlc‘fun
; were obtained for tree search with unit

step

Bibliographical and Historical Notes 111

TVE

costs and a single goal node (Pohl, 1977; Gaschnig, 1979; Huyn et al., 1980; Pearl, 1984) and
with multiple goal nodes (Dinh et al., 2007). The “effective branching factor” was proposed
by Nilsson (1971) as an empirical measure of the efficiency; it is equivalent to assuming a
time cost of O((b*)%). For tree search applied to a graph, Koif ef al. (2001) argue that the time
cost is better modeled as O(b% %), where k depends on the heuristic accuracy; this analysis
has elicited some controversy, however. For graph search, Helmert and Roger (2008) noted
that several well-known problems contained exponentially many nodes on optimal solution
paths, implying exponential time complexity for A* even with constant absolute error in h.

There are many variations on the A* algorithm. Pohl (1973) proposed the use of dynamic
weighting, which uses a weighted sum fy,(n) = wgg(n) + wph(n) of the current path length
and the heuristic function as an evaluation function, rather than the simple sum f(n) =g(n)+
h(n) used in A*. The weights w, and wj, are adjusted dynamically as the search progresses.
Pohl’s algorithm can be shown to be e-admissible—that is, guaranteed to find solutions within
a factor 1 + ¢ of the optimal solution, where e is a parameter supplied to the algorithm. The
same property is exhibited by the A} algorithm (Pearl, 1984), which can select any node from
the frontier provided its f-cost is within a factor 1 + ¢ of the lowest- f-cost frontier node. The
selection can be done so as to minimize search cost.

Bidirectional versions of A* have been investigated; a combination of bidirectional A*
and known landmarks was used to efficiently find driving routes for Microsoft’s online map
service (Goldberg et al., 2006). After caching a set of paths between landmarks, the algorithm
can find an optimal path between any pair of points in a 24 million point graph of the United
States, searching less than 0.1% of the graph. Others approaches to bidirectional search
include a breadth-first search backward from the goal up to a fixed depth, followed by a
forward IDA* search (Dillenburg and Nelson, 1994; Manzini, 1995).

A* and other state-space search algorithms are closely related to the branch-and-bound
techniques that are widely used in operations research (Lawler and Wood, 1966). The
relationships between state-space search and branch-and-bound have been investigated in
depth (Kumar and Kanal, 1983; Nau et al., 1984; Kumar ef al., 1988). Martclli and Monta-
nari (1978) demonstrate a connection between dynamic programming (see Chapter 17) and
certain types of state-space search. Kumar and Kanal (1988) attempt a “grand unification” of
heuristic search, dynamic programming, and branch-and-bound techniques under the name
of CDP—the “composite decision process.”

Because computers in the late 1950s and early 1960s had at most a few thousand words
of main memory, memory-bounded heuristic search was an early research topic. The Graph
Traverser (Doran and Michie, 1966), one of the earliest search programs, commits to an
operator after searching best-first up to the memory limit. IDA* (Korf, 1985a, 1985b) was the
first widely used optimal, memory-bounded heuristic search algorithm, and a large number
of variants have been developed. An analysis of the efficiency of IDA® and of its difficulties
with real-valued heuristics appears in Patrick et al. (1992).

RBFS (Korf, 1993) is actually somewhat more complicated than the algorithm shown
in Figure 3.26, which is closer to an independently developed algorithm called iterative ex-
pansion (Russell, 1992). RBFS uses a lower bound as well as the upper bound; the two al-
gorithms behave identically with admissible heuristics, but RBFS expands nodes in best-first

