ADVERSARIAL SEARCH

In which we examine the problems that arise when we try to plan ahead in a world
where other agents are planning against us.

5.1 GAMES

GAME

ZERO-SUM GAMES

PERFECT
INFORMATION

Chapter 2 introduced multiagent environments, in which each agent needs to consider the
actions of other agents and how they affect its own welfare. The unpredictability of these
other agents can introduce contingencies into the agent’s problem-solving process, as dis-
cussed in Chapter 4. In this chapter we cover competifive environments, in which the agents’
goals are in conflict, giving rise to adversarial search problems—often known as games.

Mathematical game theory, a branch of economics, views any multiagent environment
as a game, provided that the impact of each agent on the others is “significant,” regardless
of whether the agents are cooperative or competitive. In A, the most common games are
of a rather specialized kind—what game theorists call deterministic, turn-taking, two-player,
zero-sum games of perfect information (such as chess). In our terminology, this means
deterministic, fully observable environments in which two agents act alternately and in which
the utility values at the end of the game are .always equal and opposite. For example, if one
player wins a game of chess, the other player necessarily loses. It is this opposition between
the agents’ utility functions that makes the situation adversarial.

Games have engaged the intellectual faculties of humans—sometimes to an alarming
degree—for as long as civilization has existed. For Al researchers, the abstract nature of
games makes them an appealing subject for study. The state of a game is easy to represent,
and agents are usually restricted to a small number of actions whose outcomes are defined by
precise rules. Physical games, such as croquet and ice hockey, have much more complicated
descriptions, a much larger range of possible actions, and rather imprecise rules defining
the legality of actions. With the exception of robot soccer, these physical games have not
attracted much interest in the Al community.

1 Environments with very many agents are often viewed as economies rather than games.

161

162

Chapter 5. Adversarial Search

PRUNING

IMPERFECT
INFORMATION

TERMINAL TEST

TERMINAL STATES

GAME TREE

Games, unlike most of the toy problems studied in Chapter 3, are interesting because
they are too hard to solve. For example, chess has an average branching factor of about 35,
and games often go to 50 moves by each player, so the search tree has about 35'%0 or 10154
nodes (although the search graph has “only” about 10%° distinct nodes). Games, like the real
world, therefore require the ability to make some decision even when calculating the optimal
decision is infeasible. Games also penalize inefficiency severely. Whereas an implementation
of A" search that is half as efficient will simply take twice as long to run to completion, a chess
program that is half as efficient in using its available time probably will be beaten into the
ground, other things being equal. Game-playing research has therefore spawned a number of
interesting ideas on how to make the best possible use of time.

We begin with a definition of the optimal move and an algorithm for finding it. We
then look at techniques for choosing a good move when time is limited. Pruning allows us
to ignore portions of the search tree that make no difference to the final choice, and heuristic
evaluation functions allow us to approximate the true utility of a state without doing a com-
plete search. Section 5.5 discusses games such as backgammon that include an element of
chance; we also discuss bridge, which includes elements of imperfect information because
not all cards are visible to each player. Finally, we look at how state-of-the-art game-playing
programs fare against human opposition and at directions for future developments.

We first consider games with two players, whom we call MAX and MIN for reasons that
will soon become obvious. MAX moves first, and then they take turns moving until the game
is over. At the end of the game, points are awarded to the winning player and penalties are
given to the loser. A game can be formally defined as a kind of search problem with the
following elements:

e So: The initial state, which specifies how the game is set up at the start.

e PLAYER(s): Defines which player has the move in a state.

e ACTIONS(s): Returns the set of legal moves in a state.

e RESULT(s, a): The transition model, which defines the result of a move.

o TERMINAL-TEST(s): A terminal test, which is true when the game is over and false
otherwise. States where the game has ended are called terminal states.

e UTILITY (s, p): A utility function (also called an objective function or payoff function),
defines the final numeric value for a game that ends in terminal state s for a player p. In
chess, the outcome is a win, loss, or draw, with values +1, 0, or % Some games have a
wider variety of possible outcomes; the payoffs in backgammon range from 0 to +192.
A zero-sum game is (confusingly) defined as one where the total payoff to all players
is the same for every instance of the game. Chess is zero-sum because every game has
payoff of either 0+ 1,1 4+ 0 or % + % “Constant-sum” would have been a better term,
but zero-sum is traditional and makes sense if you imagine each player is charged an
entry fee of %

The initial state, ACTIONS function, and RESULT function define the game tree for the
game—a tree where the nodes are game states and the edges are moves. Figure 5.1 shows
part of the game tree for tic-tac-toe (noughts and crosses). From the initial state, MAX has
nine possible moves. Play alternates between MAX’s placing an X and MIN’s placing an O

Section 5.2.

Optimal Decisions in Games 163

SEARCH TREE

until we reach leaf nodes corresponding to terminal states such that one player has three in
a row or all the squares are filled. The number on each leaf node indicates the utility value
of the terminal state from the point of view of MAX; high values are assumed to be good for
MAX and bad for MIN (which is how the players get their names).

For tic-tac-toe the game tree is relatively small—fewer than 9! = 362,880 terminal
nodes. But for chess there are over 1040 nodes, so the game tree is best thought of as a
theoretical construct that we cannot realize in the physical world. But regardless of the size
of the game tree, it is MAX’s job to search for a good move. We use the term search tree for a
tree that is superimposed on the full game tree, and examines enough nodes to allow a player
to determine what move to make.

MAX (x)
X X X
MIN (o) X X X
F\ * : "
xlo X[ol [x
MAX (x) 0
x[olx] [x]o x[o
MIN (o) X X
X[O|X] [X[O{X| [X[O|X
TERMINAL o[x| [ofo]x X
[0} X{X|0| [X|O|0
Utility -1 0 +1
Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial
state, and MAX moves first, placing an X in an empty square. We show part of the tree, giving
alternating moves by MIN (0) and MAX (X), until we eventually reach terminal states, which
can be assigned utilities according to the rules of the game. 4|

5.2 OPTIMAL DECISIONS IN GAMES

STRATEGY

In a normal search problem, the optimal solution would be a sequence of actions leading to
a goal state—a terminal state that is 2 win. In adversarial search, MIN has something to say
about it. MAX therefore must find a contingent strategy, which specifies MAX’s move in
the initial state, then MAX’s moves in the states resulting from every possible response by

T e

i
|

164

Chapter 5. Adversarial Search

PLY
MINIAX VALUE

MAX

MIN

Figure 5.2 A two-ply game tree. The A nodes are “MAX nodes,” in which it is MAX’s
turn to move, and the ¥ nodes are “MIN nodes.” The terminal nodes show the utility values
for MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root
is a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

MIN, then MAX’s moves in the states resulting from every possible response by MIN to those
moves, and so on. This is exactly analogous to the AND—OR search algorithm (Figure 4.11)
with MAX playing the role of OR and MIN equivalent to AND. Roughly speaking, an optimal
strategy leads to outcomes at least as good as any other strategy when one is playing an
infallible opponent. We begin by showing how to find this optimal strategy.

Even a simple game like tic-tac-toe is too complex for us to draw the entire game tree
on one page, so we will switch to the trivial game in Figure 5.2. The possible moves for MAX
at the root node are labeled a1, a9, and a3. The possible replies to a; for MIN are by, bo,
bs, and so on. This particular game ends after one move each by MAX and MIN. (In game
parlance, we say that this tree is one move deep, consisting of two half-moves, each of which
is called a ply.) The utilities of the terminal states in this game range from 2 to 14.

Given a game tree, the optimal strategy can be determined from the minimax value
of each node, which we write as MINIMAX(7). The minimax value of a node is the utility
{(for MAX) of being in the corresponding state, assuming that both players play optimally
from there to the end of the game. Obviously, the minimax value of a terminal state is just
its utility. Furthermore, given a choice, MAX prefers to move to a state of maximum value,
whereas MIN prefers a state of minimum value. So we have the following:

MINIMAX(s) =
UTILITY(s) if TERMINAL-TEST(s)
MaXge Actions(s) MINIMAX(RESULT(s,a)) if PLAYER(S) = MAX
MiNge Actions(s) MINIMAX(RESULT (s,a)) if PLAYER(s) = MIN

Let us apply these definitions to the game tree in Figure 5.2. The terminal nodes on the bottom
level get their utility values from the game’s UTILITY function. The first MIN node, labeled
B, has three successor states with values 3, 12, and &, so its minimax value is 3. Similarly,
the other two MIN nodes have minimax value 2. The root node is a MAX node; its successor
states have minimax values 3, 2, and 2; so it has a minimax value of 3. We can also identify

Fr

Section 5.2

Optimal Decisions in Games 165

MINIMAX DECISION

MINIMAX ALGORITHM

the minimax decision at the root: action a; is the optimal choice for MAX because it leads to
the state with the highest minimax value.

This definition of optimal play for MAX assumes that MIN also plays optimally—it
maximizes the worst-case outcome for MaX. What if MIN does not play optimally? Then it is
easy to show (Exercise 5.7) that MAX will do even better. Other strategies against suboptimal
opponents may do better than the minimax strategy, but these strategies necessarily do worse
against optimal opponents.

S.2.1 The minimax algorithm

The minimax algorithm (Figure 5.3) computes the minimax decision from the current state.
It uses a simple recursive computation of the minimax values of each successor state, directly
implementing the defining equations. The recursion proceeds all the way down to the leaves
of the tree, and then the minimax values are backed up through the tree as the recursion
unwinds. For example, in Figure 5.2, the algorithm first recurses down to the three bottom-
left nodes and uses the UTILITY function on them to discover that their values are 3, 12, and
8, respectively. Then it takes the minimum of these values, 3, and returns it as the backed-
up value of node B. A similar process gives the backed-up values of 2 for €' and 2 for D.
Finally, we take the maximum of 3, 2, and 2 to get the backed-up value of 3 for the root node.
The minimax algorithm performs a complete depth-first exploration of the game tree.
If the maximum depth of the tree is m and there are b legal moves at each point, then the
time complexity of the minimax algorithm is O(b™"). The space complexity is O(bm) for an
algorithm that generates all actions at once, or O(m) for an algorithm that generates actions
one at a time (see page 87). For real games, of course, the time cost is totally impractical,
but this algorithm serves as the basis for the mathematical analysis of games and for more
practical algorithms. '

5.2.2 Optimal decisions in multiplayer games

Many popular games allow more than two players. Let us examine how to extend the minimax
idea to multiplayer games. This is straightforward from the technical viewpoint, but raises
some interesting new conceptual issues.)

First, we need to replace the single value for each node with a vector of values. For
example, in a three-player game with players A, B, and C, a vector (v4, vg, v¢) is associated
with each node. For terminal states, this vector gives the utility of the state from each player’s
viewpoint. (In two-player, zero-sum games, the two-element vector can be reduced to a single
value because the values are always opposite.) The simplest way to implement this is to have
the UTILITY function return a vector of utilities.

Now we have to consider nonterminal states. Consider the node marked X in the game
tree shown in Figure 5.4. In that state, player C chooses what to do. The two choices lead
to terminal states with utility vectors (vqg =1,vp =2,v¢c =6) and (v4 =4,vp =2,vc = 3).
Since 6 is bigger than 3, C should choose the first move. This means that if state X is reached,
subsequent play will lead to a terminal state with utilities (v4 =1,vp =2, vc =6). Hence,
the backed-up value of X is this vector. The backed-up value of a node n is always the utility

e DN R T p—

T

166 Chapter 5. Adversarial Search

function MINIMAX-DECISION(state) returns an action
return arg max, . ACTIONS(s) MIN-VALUE(RESULT(state, a))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
Ve —00 '
for each a in ACTIONS(state) do
v «— MAX(v, MIN-VALUE(RESULT(s, @)))
return v

function MIN-VALUE(state) returns q utility value
if TERMINAL-TEST(state) then return UTILITY(state)
UV — 00
for each a in ACTIONS(state) do

v — MIN(v, MAX-VALUE(RESULT(s, a)))
return v

Figure 5.3 An algorithm for calculating minimax decisions. It returns the action corre-
sponding to the best possible move, that is, the move that leads to the outcome with the
best utility, under the assumption that the opponent plays to minimize utility. The functions
MAX-VALUE and MIN-VALUE go through the whole game tree, all the way to the leaves,
to determine the backed-up value of a state. The notation argmax, ¢ g f(a) computes the
element a of set S that has the maximum value of f(a).

o move
A

(1,52 | |

(1,2,6) (4,2,3) (6,1,2) (7,4,1) (5,1,1) (1,5,2) (71,7,1) (5,4,%)

Figure 5.4 The first three plies of a game tree with three players (A, B, C). Each node is
labeled with values from the viewpoint of each player. The best move is marked at the root.

vector of the successor state with the highest value for the player choosing at n. Anyone
who plays multiplayer games, such as Diplomacy, quickly becomes aware that much more
ALLIANCE is going on than in two-player games. Multiplayer games usually involve alliances, whether
formal or informal, among the players. Alliances are made and broken as the game proceeds.
How are we to understand such behavior? Are alliances a natural consequence of optimal
strategies for each player in a multiplayer game? It turns out that they can be. For example,

Section 5.3. Alpha-Beta Pruning 167

suppose A and B are in weak positions and C is in a stronger position. Then it is often
optimal for both A and B to attack C' rather than each other, lest C destroy each of them
individually. In this way, collaboration emerges from purely selfish behavior. Of course,
as soon as C' weakens under the joint onslaught, the alliance loses its value, and either A
or B could violate the agreement. In some cases, explicit alliances merely make concrete
what would have happened anyway. In other cases, a social stigma attaches to breaking an
alliance, so players must balance the immediate advantage of breaking an alliance against the
long-term disadvantage of being perceived as untrustworthy. See Section 17.5 for more on
these complications.

If the game is not zero-sum, then collaboration can also occur with just two players.
Suppose, for example, that there is a terminal state with utilities {(v4 = 1000, v = 1000) and
that 1000 is the highest possible utility for each player. Then the optimal strategy is for both
players to do everything possible to reach this state—that is, the players will automatically
cooperate to achieve a mutually desirable goal.

5.3 ALPHA-BETA PRUNING

The problem with minimax search is that the number of game states it has to examine is
exponential in the depth of the tree. Unfortunately, we can’t eliminate the exponent, but it
turns out we can effectively cut it in half. The trick is that it is possible to compute the correct
minimax decision without looking at every node in the game tree. That is, we can borrow the .
idea of pruning from Chapter 3 to eliminate large parts of the tree from consideration. The iy
AL DETA particular technique we examine is called alpha-beta pruning. When applied to a standard it
minimax tree, it returns the same move as minimax would, but prunes away branches that
cannot possibly influence the final decision. . :
Consider again the two-ply game tree from Figure 5.2. Let’s go through the calculation]

of the optimal decision once more, this time paying careful attention to what we know at 1
each point in the process. The steps are explained in Figure 5.5. The outcome is that we can I
identify the minimax decision without ever evaluating two of the leaf nodes. | :
Another way to look at this is as a simplification of the formula for MINIMAX. Let the

two unevaluated successors of node C' in Figure 5.5 have values x and y. Then the value of . el

the root node is given by

MINIMAX (root) = max(min(3,12,8), min(2, z,y), min(14, 5, 2))

= max(3,min(2,z,y),2) [
= max(3, z, 2) where z = min(2, z,y) < 2 _ g
In other words, the value of the root and hence the minimax decision are independent of the ’ ' }*

g

values of the pruned leaves z and y.
Alpha-beta pruning can be applied to trees of any depth, and it is often possible to . i
prune entire subtrees rather than just leaves. The general principle is this: consider a node n

168 Chapter 5. Adversarial Search

(b) [—eo0, +0]

[..oo, 3]

(© (d

®

|

|

| Figure5.5 Stages in the calculation of the optimal decision for the game tree in Figure 5.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now, we can infer that the value of the root 1s at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

} would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha—beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

somewhere in the tree (see Figure 5.6), such that Player has a choice of moving to that node.
If Player has a better choice m either at the parent node of n or at any choice point further up,

mﬁ then n will never be reached in actual play. So once we have found out enough about n (by
examining some of its descendants) to reach this conclusion, we can prune it.

Remember that minimax search is depth-first, so at any one time we just have to con-
sider the nodes along a single path in the tree. Alpha—beta pruning gets its name from the
following two parameters that describe bounds on the backed-up values that appear anywhere
along the path:

Section 5.3.

Alpha—-Beta Pruning 169

Player

Opponent

Player

Opponent

Figure 5.6 The general case for alpha-beta pruning. If m is better than n for Player, we

will never get to n in play.

« = the value of the best (i.e., highest-value) choice we have found so far at any choice point
along the path for MAX.
[= the value of the best (i.e., lowest-value) choice we have found so far at any choice point

along the path for MIN.

Alpha-beta search updates the values of « and § as it goes along and prunes the remaining
branches at a node (i.e., terminates the recursive call) as soon as the value of the current
node is known to be worse than the current ¢ or 3 value for MAX or MIN, respectively. The
complete algorithm is given in Figure 5.7. We encourage you to trace its behavior when

applied to the tree in Figure 5.5.

5.3.1 Move ordering

The effectiveness of alpha—-beta pruning is highly dependent on the order in which the states
are examined. For example, in Figure 5.5(e) and (f), we could not prune any successors of D
at all because the worst successors (from the point of view of MIN) were generated first. If
the third successor of D had been generated first, we would have been able to prune the other
two. This suggests that it might be worthwhile to try to examine first the successors that are
likely to be best.

If this can be done,? then it turns out that alpha-beta needs to examine only O(b™/2)
nodes to pick the best move, instead of O(b™) for minimax. This means that the effective
branching factor becomes Vb instead of b—for chess, about 6 instead of 35. Put another
way, alpha—beta can solve a tree roughly twice as deep as minimax in the same amount of
time. If successors are examined in random order rather than best-first, the total number of
nodes examined will be roughly O(b°™/*) for moderate b. For chess, a fairly simple ordering
function (such as trying captures first, then threats, then forward moves, and then backward
moves) gets you to within about a factor of 2 of the best-case O(b™/?) result.

2 Obviously, it cannot be done perfectly; otherwise, the ordering function could be used to play a perfect game!

170 Chapter 5. Adversarial Search
function ALPHA-BETA-SEARCH(state) returns an action
v +— MAX-VALUE(state, —o0, +00)
return the action in ACTIONS(state) with value v
function MAX-VALUE(state, o,) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
Ve —00
for each a in ACTIONS(state) do
v — MAaX(v, MIN-VALUE(RESULT(s,a), &, 3))
if v > [then return v
o — MAX(a, v)
return v
function MIN-VALUE(state, o, B) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
Y — +00
for each ¢ in ACTIONS(state) do
¥ - MIN(v, MAX-VALUE(RESULT(s,a) ,cx,)
if v < « thenreturn v
8 — MIN(3, v)
return v
Figure 5.7 The alpha—beta search algorithm. Notice that these routines are the same as
. the MINIMAX functions in Figure 5.3, except for the two lines in each of MIN-VALUE and
| MAX-VALUE that maintain ¢ and 5 (and the bookkeeping to pass these parameters along). |
Adding dynamic move-ordering schemes, such as trying first the moves that were found
to be best in the past, brings us quite close to the theoretical limit. The past could be the
previous move—often the same threats remain—or it could come from previous exploration
of the current move. One way to gain information from the current move is with iterative
deepening search. First, search | ply deep and record the best path of moves. Then search
1 ply deeper, but use the recorded path to inform move ordering. As we saw in Chapter 3,
iterative deepening on an exponential game tree adds only a constant fraction to the total
search time, which can be more than made up from better move ordering. The best moves are
KILLER MOVES often called killer moves and to try them first is called the killer move heuristic.
In Chapter 3, we noted that repeated states in the search tree can cause an exponential
increase in search cost. In many games, repeated states occur frequently because of transpo-
TRANSPOSITION sitions—different permutations of the move sequence that end up in the same position. For
example, if White has one move, a;, that can be answered by Black with b, and an unre-
lated move as on the other side of the board that can be answered by by, then the sequences
[a1,b1, a2, bs] and [ag, bo, ay, b1] both end up in the same position. It is worthwhile to store
the evaluation of the resulting position in a hash table the first time it is encountered so that
we don’t have to recompute it on subsequent occurrences. The hash table of previously seen
TRANSPOSITION positions is traditionally called a transposition table; it is essentially identical to the explored

TABLE

Section 5.4,

Imperfect Real-Time Decisions 171

list in GRAPH-SEARCH (Section 3.3). Using a transposition table can have a dramatic effect,
sometimes as much as doubling the reachable search depth in chess. On the other hand, if we
are evaluating a million nodes per second, at some point it is not practical to keep all of them
in the transposition table. Various strategies have been used to choose which nodes to keep
and which to discard.

5.4 IMPERFECT REAL-TIME DECISIONS

EVALUATICN
FUNCTION

CUTOFF TEST

The minimax algorithm generates the entire game search space, whereas the alpha—beta algo-
rithm allows us to prune large parts of it. However, alpha-beta still has to search all the way
to terminal states for at least a portion of the search space. This depth is usually not practical,
because moves must be made in a reasonable amount of time—typically a few minutes at
most. Claude Shannon’s paper Programming a Computer for Playing Chess (1950) proposed
instead that programs should cut off the search earlier and apply a heuristic evaluation func-
tion to states in the search, effectively turning nonterminal nodes into terminal leaves. In
other words, the suggestion is to alter minimax or alpha-beta in two ways: replace the utility
function by a heuristic evaluation function EVAL, which estimates the position’s utility, and
replace the terminal test by a cutoff test that decides when to apply EVAL. That gives us the
following for heuristic minimax for state s and maximum depth d:

H-MINIMAX(s,d) =
EVAL(s) if CUTOFF-TEST(s,d)
MaXge Actions(s) H-MINIMAX(RESULT(s,a),d + 1) if PLAYER(s) = MAX
MiNge 4ctions(s) H-MINIMAX(RESULT(s,a),d + 1) if PLAYER(s) = MIN.

5.4.1 Evaluation functions

An evaluation function returns an estimate of the expected utility of the game from a given
position, just as the heuristic functions of Chapter 3 return an estimate of the distance to
the goal. The idea of an estimator was not new when Shannon proposed it. For centuries,
chess players (and aficionados of other games) have developed ways of judging the value of
a position because humans are even more limited in the amount of search they can do than
are computer programs. It should be clear that the performance of a game-playing program
depends strongly on the guality of its evaluation function. An inaccurate evaluation function
will guide an agent toward positions that turn out to be lost. How exactly do we design good
evaluation functions?

First, the evaluation function should order the terminal states in the same way as the
true utility function: states that are wins must evaluate better than draws, which in turn must
be better than losses. Otherwise, an agent using the evaluation function might err even if it
can see ahead all the way to the end of the game. Second, the computation must not take
too long! (The whole point is to search faster.) Third, for nonterminal states, the evaluation
function should be strongly correlated with the actual chances of winning.

sl - .

e P ——

=

172

Chapter 5. Adversarial Search

EXPECTED VALUE

MATERIAL VALUE

WEIGHTED LINEAR
FUNCTION

One might well wonder about the phrase “chances of winning.” After all, chess is not a
game of chance: we know the current state with certainty, and no dice are involved. But if the
search must be cut off at nonterminal states, then the algorithm will necessarily be uncertain
about the final outcomes of those states. This type of uncertainty is induced by computational,
rather than informational, limitations. Given the limited amount of computation that the
evaluation function is allowed to do for a given state, the best it can do is make a guess about
the final outcome.

Let us make this idea more concrete. Most evaluation functions work by calculating
various features of the state—for example, in chess, we would have features for the number
of white pawns, black pawns, white queens, black queens, and so on. The features, taken
together, define various categories or equivalence classes of states: the states in each category
have the same values for all the features. For example, one category contains all two-pawn
vs. one-pawn endgames. Any given category, generally speaking, will contain some states
that lead to wins, some that lead to draws, and some that lead to losses. The evaluation
function cannot know which states are which, but it can return a single value that reflects the
proportion of states with each outcome. For example, suppose our experience suggests that
72% of the states encountered in the two-pawns vs. one-pawn category lead to a win (utility
+1); 20% to a loss (0), and 8% to a draw (1/2). Then a reasonable evaluation for states in
the category is the expected value: (0.72 x +1) 4 (0.20 x 0) + (0.08 x 1/2) = 0.76. In
principle, the expected value can be determined for each category, resulting in an evaluation
function that works for any state. As with terminal states, the evaluation function need not
return actual expected values as long as the ordering of the states is the same.

In practice, this kind of analysis requires too many categories and hence too much
experience to estimate all the probabilities of winning. Instead, most evaluation functions
compute separate numerical contributions from each feature and then combine them to find
the total value. For example, introductory chess books give an approximate material value
for each piece: each pawn is worth 1, a knight or bishop is worth 3, a rook 5, and the queen 9.
Other features such as “good pawn structure” and “king safety” might be worth half a pawn,
say. These feature values are then simply added up to obtain the evaluation of the position.

A secure advantage equivalent to a pawn gives a substantial likelihood of winning, and
a secure advantage equivalent to three pawns should give almost certain victory, as illustrated
in Figure 5.8(a). Mathematically, this kind of evaluation function is called a weighted linear
function because it can be expressed as ‘

EVAL(s) = w1 f1(s) + wafa(s) + - + wafuls) = D wifi(s)
=1

where each w; is a weight and each f; is a feature of the position. For chess, the f; could be
the numbers of each kind of piece on the board, and the w; could be the values of the pieces
(1 for pawn, 3 for bishop, etc.).

Adding up the values of features seems like a reasonable thing to do, but in fact it
involves a strong assumption: that the contribution of each feature is independent of the
values of the other features. For example, assigning the value 3 to a bishop ignores the fact
that bishops are more powerful in the endgame, when they have a lot of space to maneuver.

|

Section 5.4.

Imperfect Real-Time Decisions 173

jie-

(a) White to move (b) White to move

Figure 5.8 Two chess positions that differ only in the position of the rook at lower right.
In (a), Black has an advantage of a knight and two pawns, which should be enough to win
the game. In (b), White will capture the queen, giving it an advantage that should be strong

enough to win.

For this reason, current programs for chess and other games also use nonlinear combinations
of features. For example, a pair of bishops might be worth slightly more than twice the value
of a single bishop, and a bishop is worth more in the endgame (that is, when the move number
feature is high or the number of remaining pieces feature is low).

The astute reader will have noticed that the features and weights are not part of the rules
of chess! They come from centuries of human chess-playing experience. In games where this
kind of experience is not available, the weights of the evaluation function can be estimated
by the machine learning techniques of Chapter 18. Reassuringly, applying these techniques
to chess has confirmed that a bishop is indeed worth about three pawns.

5.4.2 Cutting off search

The next step is to modify ALPHA-BETA-SEARCH so that it will call the heuristic EVAL
function when it is appropriate to cut off the search. We replace the two lines in Figure 5.7
that mention TERMINAL-TEST with the following line:

if CUTOFF-TEST(state, depth) then return EVAL(state)

We also must arrange for some bookkeeping so that the current depth is incremented on each
recursive call. The most straightforward approach to controlling the amount of search is to set
a fixed depth limit so that CUTOFF-TEST (state, depth) returns true for all depth greater than
some fixed depth d. (It must also return Zrue for all terminal states, just as TERMINAL-TEST
did.) The depth d is chosen so that a move is selected within the allocated time. A more
robust approach is to apply iterative deepening. (See Chapter 3.) When time runs out, the
program returns the move selected by the deepest completed search. As a bonus, iterative
deepening also helps with move ordering.

5. st~ el AT AR

174

Chapter 5. Adversarial Search

QUIESCENCE

QUIESCENCE
SEARCH

HORIZON EFFECT

SINGULAR
EXTENSION

FORWARD PRUNING

BEAM SEARCH

These simple approaches can lead to errors due to the approximate nature of the eval-
uation function. Consider again the simple evaluation function for chess based on material
advantage. Suppose the program searches to the depth limit, reaching the position in Fig-
ure 5.8(b), where Black is ahead by a knight and two pawns. It would report this as the
heuristic value of the state, thereby declaring that the state is a probable win by Black. But
White’s next move captures Black’s queen with no compensation. Hence, the position is
really won for White, but this can be seen only by looking ahead one more ply.

Obviously, a more sophisticated cutoff test is needed. The evaluation function should be
applied only to positions that are quiescent—that is, unlikely to exhibit wild swings in value
in the near future. In chess, for example, positions in which favorable captures can be made
are not quiescent for an evaluation function that just counts material. Nonquiescent positions
can be expanded further until quiescent positions are reached. This extra search is called a
quiescence search; sometimes it is restricted to consider only certain types of moves, such
as capture moves, that will quickly resolve the uncertainties in the position.

The horizon effect is more difficult to eliminate. It arises when the program is facing
an opponent’s move that causes serious damage and is ultimately unavoidable, but can be
temporarily avoided by delaying tactics. Consider the chess game in Figure 5.9. It is clear
that there is no way for the black bishop to escape. For example, the white rook can capture
it by moving to hl, then al, then a2; a capture at depth 6 ply. But Black does have a sequence
of moves that pushes the capture of the bishop “over the horizon.” Suppose Black searches
to depth 8 ply. Most moves by Black will lead to the eventual capture of the bishop, and thus
will be marked as “bad” moves. But Black will consider checking the white king with the
pawn at e4. This will lead to the king capturing the pawn. Now Black will consider checking
again, with the pawn at {5, leading to another pawn capture. That takes up 4 ply, and from
there the remaining 4 ply is not enough to capture the bishop. Black thinks that the line of
play has saved the bishop at the price of two pawns, when actually all it has done is push the
inevitable capture of the bishop beyond the horizon that Black can see.

One strategy to mitigate the horizon effect is the singular extension, a move that is
“clearly better” than all other moves in a given position. Once discovered anywhere in the
tree in the course of a search, this singular move is remembered. When the search reaches the
normal depth limit, the algorithm checks to see if the singular extension is a legal move; if it
is, the algorithm allows the move to be considered. This makes the tree deeper, but because
there will be few singular extensions, it does not add many total nodes to the tree.

5.4.3 Forward pruning

So far, we have talked about cutting off search at a certain level and about doing alpha—
beta pruning that provably has no effect on the result (at least with respect to the heuristic
evaluation values). It is also possible to do forward pruning, meaning that some moves at
a given node are pruned immediately without further consideration. Clearly, most humans
playing chess consider only a few moves from each position (at least consciously). One
approach to forward pruning is beam search: on each ply, consider only a “beam” of the n
best moves (according to the evaluation function) rather than considering all possible moves.

Section 5.4.

Imperfect Real-Time Decisions 175

[= T ¥ e S O B N

a b c d e f g h

Figure 5.9 The horizon effect. With Black to move, the black bishop is surely doomed.
But Black can forestall that event by checking the white king with its pawns, forcing the king
to capture the pawns. This pushes the inevitable loss of the bishop over the horizon, and thus
the pawn sacrifices are seen by the search algorithm as good moves rather than bad ones.

Unfortunately, this approach is rather dangerous because there is no guarantee that the best
move will not be pruned away. ’

The PROBCUT, or probabilistic cut, algorithm (Buro, 1995) is a forward-pruning ver-
sion of alpha—beta search that uses statistics gained from prior experience to lessen the chance
that the best move will be pruned. Alpha-beta search prunes any node that is provably out-
side the current (¢, 3) window. PROBCUT also prunes nodes that are probably outside the
window. It computes this probability by doing a shallow search to compute the backed-up
value v of a node and then using past experience to estimate how likely it is that a score of v
at depth d in the tree would be outside (e, 3). Buro applied this technique to his Othello pro-
gram, LOGISTELLO, and found that a version of his program with PROBCUT beat the regular
version 64% of the time, even when the regular version was given twice as much time.

Combining all the techniques described here results in a program that can play_cred-
itable chess (or other games). Let us assume we have implemented an evaluation function for
chess, a reasonable cutoff test with a quiescence search, and a large transposition table. Let
us also assume that, after months of tedious bit-bashing, we can generate and evaluate around
a million nodes per second on the latest PC, allowing us to search roughly 200 million nodes
per move under standard time controls (three minutes per move). The branching factor for
chess is about 35, on average, and 35° is about SO million, so if we used minimax search,
we could look ahead only about five plies. Though not incompetent, such a program can be
fooled easily by an average human chess player, who can occasionally plan six or eight plies
ahead. With alpha—beta search we get to about 10 plies, which results in an expert level of
play. Section 5.8 describes additional pruning techniques that can extend the effective search
depth to roughly 14 plies. To reach grandmaster status we would need an extensively tuned
evaluation function and a large database of optimal opening and endgame moves.

176

Chapter 3. Adversarial Search

POLICY

RETROGRADE

5.4.4 Search versus lookup

Somehow it seems like overkill for a chess program to start a game by considering a tree of a
billion game states, only to conclude that it will move its pawn to e4. Books describing good
play in the opening and endgame in chess have been available for about a century (Tattersall,
1911). It is not surprising, therefore, that many game-playing programs use table lookup
rather than search for the opening and ending of games.

For the openings, the computer is mostly relying on the expertise of humans. The best
advice of human experts on how to play each opening is copied from books and entered into
tables for the computer’s use. However, computers can also gather statistics from a database
of previously played games to see which opening sequences most often lead to a win. In
the early moves there are few choices, and thus much expert commentary and past games on
which to draw. Usually after ten moves we end up in a rarely seen position, and the program
must switch from table lookup to search.

Near the end of the game there are again fewer possible positions, and thus more chance
to do lookup. But here it is the computer that has the expertise: computer analysis of
endgames goes far beyond anything achieved by humans. A human can tell you the gen-
eral strategy for playing a king-and-rook-versus-king (KRK) endgame: reduce the opposing
king’s mobility by squeezing it toward one edge of the board, using your king to prevent the
opponent from escaping the squeeze. Other endings, such as king, bishop, and knight versus
king (KBNK), are difficult to master and have no succinct strategy description. A computer,
on the other hand, can completely solve the endgame by producing a policy, which is a map-
ping from every possible state to the best move in that state. Then we can just look up the best
move rather than recompute it anew. How big will the KBNK lookup table be? It turns out
there are 462 ways that two kings can be placed on the board without being adjacent. After
the kings are placed, there are 62 empty squares for the bishop, 61 for the knight, and two
possible players to move next, so there are just 462 x 62 x 61 x 2 = 3,494, 568 possible
positions. Some of these are checkmates; mark them as such in a table. Then do a retrograde
minimax search: reverse the rules of chess to do unmoves rather than moves. Any move by
White that, no matter what move Black responds with, ends up in a position marked as a win,
must also be a win. Continue this search until all 3,494,568 positions are resolved as win,
loss, or draw, and you have an infallible lookup table for all KBNK endgames.

Using this technique and a tour de force of optimization tricks, Ken Thompson (1986,
1996) and Lewis Stiller (1992, 1996) solved all chess endgames with up to five pieces and
some with six pieces, making them available on the Internet. Stiller discovered one case
where a forced mate existed but required 262 moves; this caused some consternation because
the rules of chess require a capture or pawn move o occur within 50 moves. Later work by
Marc Bourzutschky and Yakov Konoval (Bourzutschky, 2006) solved all pawnless six-piece
and some seven-piece endgames; there is a KQNKRBN endgame that with best play requires
517 moves until a capture, which then leads to a mate.

If we could extend the chess endgame tables from 6 pieces to 32, then White would
know on the opening move whether it would be a win, loss, or draw. This has not happened
so far for chess, but it has happened for checkers, as explained in the historical notes section.

Section 5.5.

Stochastic Games 177

5.5 STOCHASTIC GAMES

STOCHASTIC GAMES

’HANCE NODES

In real life, many unpredictable external events can put us into unforeseen situations. Many
games mirror this unpredictability by including a random element, such as the throwing of
dice. We call these stochastic games. Backgammon is a typical game that combines luck
and skill. Dice are rolled at the beginning of a player’s turn to determine the legal moves. In
the backgammon position of Figure 5.10, for example, White has rolled a 6-5 and has four
possible moves.

25 24 23 22 21 20 19 18 17 16 15 14 13

Figure 510 A typical backgammon position. The goal of the game is to move all one’s
pieces off the board. White moves clockwise toward 25, and Black moves counterclockwise
toward 0. A plece can move to any position unless multiple opponent pieces are there; if there
is one opponent, it is captured and must start over. In the position shown, White has rolled
6-5 and must choose among four legal moves: (5-10,5-11), (5-11,19-24), (5-10,10-16),
and (5-11,11-16), where the notation (5-11,11-16) means move one piece from position 5

to 11, and then move a piece from 11 to 16.

Although White knows what his or her own legal moves are, White does not know what
Black is going to roll and thus does not know what Black’s legal moves will be. That means
White cannot construct a standard game tree of the sort we saw in chess and tic-tac-toe. A
game tree in backgammon must include chance nodes in addition to MAX and MIN nodes.
Chance nodes are shown as circles in Figure 5.11. The branches leading from each chance
node denote the possible dice rolls; each branch is labeled with the roll and its probability.
There are 36 ways to roll two dice, each equally likely; but because a 6-5 is the same as a 5-6,
there are only 21 distinct rolls. The six doubles (1-1 through 6~6) each have a probability of
1/36, so we say P(1-1) = 1/36. The other 15 distinct rolls each have a 1/18 probability.

178 Chapter 5. Adversarial Search
MAX
CHANCE () O
1136
1,1
MIN A 4
CHANCE (©) @ .. @)
1/36 1/18 1/18 1/36
11 1,2 6,5 6,6
MAX A A ... A £\
TERMINAL 2 -1 1 -1 1
Figure 5.11 Schematic game tree for a backgammon position.
The next step is to understand how to make correct decisions. Obviously, we still want
to pick the move that leads to the best position. However, positions do not have definite
mxpecTEDwALUE minimax values. Instead, we can only calculate the expected value of a position: the average
over all possible outcomes of the chance nodes.
This leads us to generalize the minimax value for deterministic games to an expecti-
EXPECTMINMAX— minimax value for games with chance nodes. Terminal nodes and MAX and MIN nodes (for

VALUE

which the dice roll is known) work exactly the same way as before. For chance nodes we
compute the expected value, which is the sum of the value over all outcomes, weighted by
the probability of each chance action:

EXPECTIMINIMAX(s) =

UTILITY (s)
max, EXPECTIMINIMAX (RESULT (s, a))
min, EXPECTIMINIMAX(RESULT(s,a))

if TERMINAL-TEST(s)
if PLAYER(S) = MAX
if PLAYER(S) = MIN

>, P(r)EXPECTIMINIMAX (RESULT(s,7)) if PLAYER(s) = CHANCE

where 7 represents a possible dice roll (or other chance event) and RESULT(s,7) is the same
state as s, with the additional fact that the result of the dice roll is 7.

5.5.1 Evaluation functions for games of chance

As with minimax, the obvious approximation to make with expectiminimax is to cut the
search off at some point and apply an evaluation function to each leaf. One might think that
evaluation functions for games such as backgammon should be just like evaluation functions

Section 5.5.

Stochastic Games 179

for chess—they just need to give higher scores to better positions. But in fact, the presence of
chance nodes means that one has to be more careful about what the evaluation values mean.
Figure 5.12 shows what happens: with an evaluation function that assigns the values [1, 2,
3, 4] to the leaves, move a, is best; with values [1, 20, 30, 400], move as is best. Hence,
the program behaves totally differently if we make a change in the scale of some evaluation
values! It turns out that to avoid this sensitivity, the evaluation function must be a positive
linear transformation of the probability of winning from a position (or, more generally, of the
expected utility of the position). This is an important and general property of situations in
which uncertainty is involved, and we discuss it further in Chapter 16.

MAX

MIN

200 20 30 30 1 1 400 400

Figure 5.12 An order-preserving transformation on leaf values changes the best move.

If the program knew in advance all the dice rolls that would occur for the rest of the
game, solving a game with dice would be just like solving a game without dice, which mini-
max does in O(b™) time, where b is the branching factor and m is the maximum depth of the
game tree. Because expectiminimax is also considering all the possible dice-roll sequences,
it will take O(b™n'™), where n is the number of distinct rolls.

Even if the search depth is limited to some small depth d, the extra cost compared with
that of minimax makes it unrealistic to consider looking ahead very far in most games of
chance. In backgammon 7 is 21 and b is usually around 20, but in some situations can be as
high as 4000 for dice rolls that are doubles. Three plies is probably all we could manage.

Another way to think about the problem is this: the advantage of alpha—beta is that
it ignores future developments that just are not going to happen, given best play. Thus, it
concentrates on likely occurrences. In games with dice, there are no likely sequences of
moves, because for those moves to take place, the dice would first have to come out the right
way to make them legal. This is a general problem whenever uncertainty enters the picture:
the possibilities are multiplied enormously, and forming detailed plans of action becomes
pointless because the world probably will not play along.

It may have occurred to you that something like alpha-beta pruning could be applied

180

Chapter 5. Adversarial Search

MONTE CARLO
SIMULATION

ROLLOUT

to game trees with chance nodes. It turns out that it can. The analysis for MIN and MAX
nodes is unchanged, but we can also prune chance nodes, using a bit of ingenuity. Consider
the chance node C in Figure 5.11 and what happens to its value as we examine and evaluate
its children. Is it possible to find an upper bound on the value of C' before we have looked
at all its children? (Recall that this is what alpha-beta needs in order to prune a node and its
subtree.) At first sight, it might seem impossible because the value of C' is the average of its
children’s values, and in order to compute the average of a set of numbers, we must look at
all the numbers. But if we put bounds on the possible values of the utility function, then we
can arrive at bounds for the average without looking at every number. For example, say that
all utility values are between —2 and +2; then the value of leaf nodes is bounded, and in turn
we can place an upper bound on the value of a chance node without looking at all its children.

An alternative is to do Monte Carlo simulation to evaluate a position. Start with
an alpha—beta (or other) search algorithm. From a start position, have the algorithm play
thousands of games against itself, using random dice rolls. In the case of backgammon, the
resulting win percentage has been shown to be a good approximation of the value of the
position, even if the algorithm has an imperfect heuristic and is searching only a few plies
(Tesauro, 1995). For games with dice, this type of simulation is called a rollout.

5.6 PARTIALLY OBSERVABLE GAMES

KAIEGSPIEL

Chess has often been described as war in miniature, but it lacks at least one major charac-
teristic of real wars, namely, partial observability. In the “fog of war,” the existence and
disposition of enemy units is often unknown until revealed by direct contact. As a result,
warfare includes the use of scouts and spies to gather information and the use of concealment
and bluff to confuse the enemy. Partially observable games share these characteristics and
are thus qualitatively different from the games described in the preceding sections.

5.6.1 Kriegspiel: Partially observable chess

In deterministic partially observable games, uncertainty about the state of the board arises en-
tirely from lack of access to the choices made by the opponent. This class includes children’s
games such as Battleships (where each player’s ships are placed in locations hidden from the
opponent but do not move) and Stratego (where piece locations are known but piece types are
hidden). We will examine the game of Kriegspiel, a partially observable variant of chess in
which pieces can move but are completely invisible to the opponent.

The rules of Kriegspiel are as follows: White and Black each see a board containing
only their own pieces. A referee, who can see all the pieces, adjudicates the game and period-
ically makes announcements that are heard by both players. On his turn, White proposes to
the referee any move that would be legal if there were no black pieces. If the move is in fact
not legal (because of the black pieces), the referee announces “illegal.” In this case, White
may keep proposing moves until a legal one is found—and learns more about the location of
Black’s pieces in the process. Once a legal move is proposed, the referee announces one or

Section 5.0.

Partially Observable Games 181

GUARANTEED
CHECKMATE

PROBABILISTIC
CHECKNMATE

more of the following: “Capture on square X if there is a capture, and “Check by D” if the
black king is in check, where D is the direction of the check, and can be one of “Knight,”
“Rank,” “File,” “Long diagonal,” or “Short diagonal.” (In case of discovered check, the ref-
eree may make two “Check” announcements.) If Black is checkmated or stalemated, the
referee says so; otherwise, it is Black’s turn to move.

Kriegspiel may seem terrifyingly impossible, but humans manage it quite well and com-
puter programs are beginning to catch up. It helps to recall the notion of a belief state as
defined in Section 4.4 and illustrated in Figure 4.14—the set of all logically possible board
states given the complete history of percepts to date. Initially, White’s belief state is a sin-
gleton because Black’s pieces haven’t moved yet. After White makes a move and Black re-
sponds, White’s belief state contains 20 positions because Black has 20 replies to any White
move. Keeping track of the belief state as the game progresses is exactly the problem of state
estimation, for which the update step is given in Equation (4.6). We can map Kriegspiel
state estimation directly onto the partially observable, nondeterministic framework of Sec-
tion 4.4 if we consider the opponent as the source of nondeterminism; that is, the RESULTS
of White’s move are composed from the (predictable) outcome of White’s own move and the
unpredictable outcome given by Black’s reply.’

Given a current belief state, White may ask, “Can I win the game?”’ For a partially
observable game, the notion of a strategy is altered; instead of specifying a move to make
for each possible move the opponent might make, we need a move for every possible percept
sequence that might be received. For Kriegspiel, a winning strategy, or guaranteed check-
mate, is one that, for each possible percept sequence, leads to an actual checkmate for every
possible board state in the current belief state, regardless of how the opponent moves. With
this definition, the opponent’s belief state is irrelevant—the strategy has to work even if the
opponent can see all the pieces. This greatly simplifies the computation. Figure 5.13 shows .
part of a guaranteed checkmate for the KRK (king and rook against king) endgame. In this
case, Black has just one piece (the king), so a belief state for White can be shown in a single
board by marking each possible position of the Black king.

The general AND-OR search algorithm can be applied to the belief-state space to find
guaranteed checkmates, just as in Section 4.4. The incremental belief-state algorithm men-
tioned in that section often finds midgame checkmates up to depth 9—probably well beyond
the abilities of human players. '

In addition to guaranteed checkmates, Kriegspiel admits an entirely new concept that
makes no sense in fully observable games: probabilistic checkmate. Such checkmates are
still required to work in every board state in the belief state; they are probabilistic with respect
to randomization of the winning player’s moves. To get the basic idea, consider the problem
of finding a lone black king using just the white king. Simply by moving randomly, the
white king will eventually bump into the black king even if the latter tries to avoid this fate,
since Black cannot keep guessing the right evasive moves indefinitely. In the terminology of
probability theory, detection occurs with probability 1. The KBNK endgame—king, bishop

3 Sometimes, the belief state will become too large to represent just as a list of board states, but we will ignore
this issue for now; Chapters 7 and 8 suggest methods for compactly representing very large belief states.

182

Chapter 5. Adversarial Search

ACCIDENTAL
CHECKMATE

.

Figure 5.13 Part of a guaranteed checkmate in the KRK endgame, shown on a reduced
board. In the initial belief state, Black’s king is in one of three possible locations. By a
combination of probing moves, the strategy narrows this down to one. Completion of the

checkmate is left as an exercise.

and knight against king—is won in this sense; White presents Black with an infinite random
sequence of choices, for one of which Black will guess incorrectly and reveal his position,
leading to checkmate. The KBBK endgame, on the other hand, is won with probability 1 — .
White can force a win only by leaving one of his bishops unprotected for one move. If
Black happens to be in the right place and captures the bishop (a move that would lose if the
bishops are protected), the game is drawn. White can choose to make the risky move at some
randomly chosen point in the middle of a very long sequence, thus reducing € to an arbitrarily
small constant, but cannot reduce ¢ to zero.

It is quite rare that a guaranteed or probabilistic checkmate can be found within any
reasonable depth, except in the endgame. Sometimes a checkmate strategy works for some of
the board states in the current belief state but not others. Trying such a strategy may succeed,
leading to an accidental checkmate—accidental in the sense that White could not know that
it would be checkmate—if Black’s pieces happen to be in the right places. (Most checkmates
in games between humans are of this accidental nature.) This idea leads naturally to the
question of how likely it is that a given strategy will win, which leads in turn to the question
of how likely it is that each board state in the current belief state is the true board state.

Section 3.6.

Partially Observable Games 183

s

One’s first inclination might be to propose that all board states in the current belief state
are equally likely—but this can’t be right. Consider, for example, White’s belief state after
Black’s first move of the game. By definition (assuming that Black plays optimally), Black
must have played an optimal move, so all board states resulting from suboptimal moves ought
to be assigned zero probability. This argument is not quite right either, because each player’s
goal is not just to move pieces to the right squares but also to minimize the information that
the opponent has about their location. Playing any predictable “‘optimal” strategy provides
the opponent with information. Hence, optimal play in partially observable games requires
a willingness to play somewhat randomly. (This is why restaurant hygiene inspectors do
random inspection visits.) This means occasionally selecting moves that may seem “intrinsi-
cally” weak—but they gain strength from their very unpredictability, because the opponent is
unlikely to have prepared any defense against them.

From these considerations, it seems that the probabilities associated with the board
states in the current belief state can only be calculated given an optimal randomized strat-
egy; in turn, computing that strategy seems to require knowing the probabilities of the var-
ious states the board might be in. This conundrum can be resolved by adopting the game-
theoretic notion of an equilibrium solution, which we pursue further in Chapter 17. An
equilibrium specifies an optimal randomized strategy for each player. Computing equilib-
ria is prohibitively expensive, however, even for small games, and is out of the question for
Kriegspiel. At present, the design of effective algorithms for general Kriegspiel play is an
open research topic. Most systems perform bounded-depth lookahead in their own belief-
state space, ignoring the opponent’s belief state. Evaluation functions resemble those for the
observable game but include a component for the size of the belief state—smaller is better!

5.6.2 Card games

Card games provide many examples of stochastic partial observability, where the missing
information is generated randomly. For example, in many games, cards are dealt randomly at
the beginning of the game, with each player receiving a hand that is not visible to the other
players. Such games include bridge, whist, hearts, and some forms of poker.

At first sight, it might seem that these card games are just like dice games: the cards are
dealt randomly and determine the moves available to each player, but all the “dice” are rolled
at the beginning! Even though this analogy turns out to be incorrect, it suggests an effective
algorithm: consider all possible deals of the invisible cards; solve each one as if it were a
fully observable game; and then choose the move that has the best outcome averaged over all
the deals. Suppose that each deal s occurs with probability P(s); then the move we want is

argmax » P(s) MINIMAX(RESULT(s,a)) . (5.1)
a

Here, we run exact MINIMAX if computationally feasible; otherwise, we run H-MINIMAX.
Now, in most card games, the number of possible deals is rather large. For example,
in bridge play, each player sees just two of the four hands; there are two unseen hands of 13
cards each, so the number of deals is (23) = 10,400,600. Solving even one deal is quite
difficult, so solving ten million is out of the question. Instead, we resort to a Monte Carlo

184

Chapter 5. Adversarial Search

BLUFF

approximation: instead of adding up all the deals, we take a random sample of N deals,
where the probability of deal s appearing in the sample is proportional to P(s):

LN

argznax N ; MINIMAX(RESULT (s;,a)) . (5.2)
(Notice that P(s) does not appear explicitly in the summation, because the samples are al-
ready drawn according to P(s).) As N grows large, the sum over the random sample tends
to the exact value, but even for fairly small N—say, 100 to 1,000—the method gives a good
approximation, It can also be applied to deterministic games such as Kriegspiel, given some
reasonable estimate of P(s).

For games like whist and hearts, where there is no bidding or betting phase before play
commences, each deal will be equally likely and so the values of P(s) are all equal. For
bridge, play is preceded by a bidding phase in which each team indicates how many tricks it
expects to win. Since players bid based on the cards they hold, the other players learn more
about the probability of each deal. Taking this into account in deciding how to play the hand
is tricky, for the reasons mentioned in our description of Kriegspiel: players may bid in such
a way as to minimize the information conveyed to their opponents. Even so, the approach is
quite effective for bridge, as we show in Section 5.7.

The strategy described in Equations 5.1 and 5.2 is sometimes called averaging over
clairvoyance because it assumes that the game will become observable to both players im-
mediately after the first move. Despite its intuitive appeal, the strategy can lead one astray.
Consider the following story:

Day 1: Road A leads to a heap of gold; Road B leads to a fork. Take the left fork and
you’ll find a bigger heap of gold, but take the right fork and you’ll be run over by a bus.
Day 2: Road A leads to a heap of gold; Road B leads to a fork. Take the right fork and
you’ll find a bigger heap of gold, but take the left fork and you’ll be run over by a bus.
Day 3: Road A leads to a heap of gold; Road B leads to a fork. One branch of the
fork leads to a bigger heap of gold, but take the wrong fork and you’ll be hit by a bus.
Unfortunately you don’t know which fork is which.

Averaging over clairvoyance leads to the following reasoning: on Day 1, B is the right choice;
on Day 2, B is the right choice; on Day 3, the situation is the same as either Day 1 or Day 2,
so B must still be the right choice. :

Now we can see how averaging over clairvoyance fails: it does not consider the belief
state that the agent will be in after acting. A belief state of total ignorance is not desirable, es-
pecially when one possibility is certain death. Because it assumes that every future state will
automatically be one of perfect knowledge, the approach never selects actions that gather in-
Sformation (like the first move in Figure 5.13); nor will it choose actions that hide information
from the opponent or provide information to a partner because it assumes that they already
know the information; and it will never bluff in poker,* because it assumes the opponent can
see its cards. In Chapter 17, we show how to construct algorithms that do all these things by
virtue of solving the true partially observable decision problem.

4 Bluffing—betting as if one’s hand is good, even when it’s not—is a core part of poker strategy.

Section 5.7.

State-of-the-Art Game Programs 185

5.7 STATE-OF-THE-ART GAME PROGRAMS

CHESS

NULL MOVE

FUTILITY PRUNING

In 1965, the Russian mathematician Alexander Kronrod called chess “the Drosophila of ar-
tificial intelligence.” John McCarthy disagrees: whereas geneticists use fruit flies to make
discoveries that apply to biology more broadly, Al has used chess to do the equivalent of
breeding very fast fruit flies. Perhaps a better analogy is that chess is to Al as Grand Prix
motor racing is to the car industry: state-of-the-art game programs are blindingly fast, highly
optimized machines that incorporate the latest engineering advances, but they aren’t much
use for doing the shopping or driving off-road. Nonetheless, racing and game-playing gen-
erate excitement and a steady stream of innovations that have been adopted by the wider
community. In this section we look at what it takes to come out on top in various games.

Chess: IBM’s DEEP BLUE chess program, now retired, is well known for defeating world
champion Garry Kasparov in a widely publicized exhibition match. Deep Blue ran on a par-
allel computer with 30 IBM RS/6000 processors doing alpha-beta search. The unique part
was a configuration of 480 custom VLSI chess processors that performed move generation
and move ordering for the last few levels of the tree, and evaluated the leaf nodes. Deep Blue
searched up to 30 billion positions per move, reaching depth 14 routinely. The key to its
success seems to have been its ability to generate singular extensions beyond the depth limit
for sufficiently interesting lines of forcing/forced moves. In some cases the search reached a
depth of 40 plies. The evaluation function had over 8000 features, many of them describing
highly specific patterns of pieces. An “opening book™ of about 4000 positions was used, as
well as a database of 700,000 grandmaster games from which consensus recommendations
could be extracted. The system also used a large endgame database of solved positions con-
taining all positions with five pieces and many with six pieces. This database had the effect
of substantially extending the effective search depth, allowing Deep Blue to play perfectly in
some cases even when it was many moves away from checkmate.

The success of DEEP BLUE reinforced the widely held belief that progress in computer
game-playing has come primarily from ever-more-powerful hardware—a view encouraged
by IBM. But algorithmic improvements have allowed programs running on standard PCs
to win World Computer Chess Championships. A variety of pruning heuristics are useéd to
reduce the effective branching factor to less than 3 (compared with the actual branching factor
of about 35). The most important of these is the null move heuristic, which generates a good
lower bound on the value of a position, using a shallow search in which the opponent gets
to move twice at the beginning. This lower bound often allows alpha-beta pruning without
the expense of a full-depth search. Also important is futility pruning, which helps decide in
advance which moves will cause a beta cutoff in the successor nodes.

HYDRA can be seen as the successor to DEEP BLUE. HYDRA runs on a 64-processor
cluster with 1 gigabyte per processor and with custom hardware in the form of FPGA (Field
Programmable Gate Array) chips. HYDRA reaches 200 million evaluations per second, about
the same as Deep Blue, but HYDRA reaches 18 plies deep rather than just 14 because of
aggressive use of the null move heuristic and forward pruning.

186

Chapter 5. Adversarial Search

CHECKERS

OTHELLO

BACKGAMMON

GO

COMBINATORIAL
GAME THEQORY

BRIDGE

RYBKA, winner of the 2008 and 2009 World Computer Chess Championships, is con-
sidered the strongest current computer player. It uses an off-the-shelf 8-core 3.2 GHz Intel
Xeon processor, but little is known about the design of the program. RYBKA’s main ad-
vantage appears to be its evaluation function, which has been tuned by its main developer,
International Master Vasik Rajlich, and at least three other grandmasters.

The most recent matches suggest that the top computer chess programs have pulled
ahead of all human contenders. (See the historical notes for details.)

Checkers: Jonathan Schaeffer and colleagues developed CHINOOK, which runs on regular
PCs and uses alpha-beta search. Chinook defeated the long-running human champion in an
abbreviated match in 1990, and since 2007 CHINOOK has been able to play perfectly by using
alpha—beta search combined with a database of 39 trillion endgame positions.

Othello, also called Reversi, is probably more popular as a computer game than as a board
game. It has a smaller search space than chess, usually 5 to 15 legal moves, but evaluation
expertise had to be developed from scratch. In 1997, the LOGISTELLO program (Buro, 2002)
defeated the human world champion, Takeshi Murakami, by six games to none. It is generally
acknowledged that humans are no match for computers at Othello.

Backgammon: Section 5.5 explained why the inclusion of uncertainty from dice rolls makes
deep search an expensive luxury. Most work on backgammon has gone into improving the
evaluation function. Gerry Tesauro (1992) combined reinforcement learning with neural
networks to develop a remarkably accurate evaluator that is used with a search to depth 2
or 3. After playing more than a million training games against itself, Tesauro’s program,
TD-GAMMON, is competitive with top human players. The program’s opinions on the open-
ing moves of the game have in some cases radically altered the received wisdom.

Go is the most popular board game in Asia. Because the board is 19 x 19 and moves are
allowed into (almost) every empty square, the branching factor starts at 361, which is too
daunting for regular alpha—beta search methods. In addition, it is difficult to write an eval-
uation function because control of territory is often very unpredictable until the endgame.
Therefore the top programs, such as M0GO, avoid alpha—beta search and instead use Monte
Carlo rollouts. The trick is to decide what moves to make in the course of the rollout. There is
no aggressive pruning; all moves are possible. The UCT (upper confidence bounds on trees)
method works by making random moves in the first few iterations, and over time guiding
the sampling process to prefer moves that have led to wins in previous samples. Some tricks
are added, including knowledge-based rules that suggest particular moves whenever a given
pattern is detected and limited local search to decide tactical questions. Some programs also
include special techniques from combinatorial game theory to analyze endgames. These
techniques decompose a position into sub-positions that can be analyzed separately and then
combined (Berlekamp and Wolfe, 1994; Miiller, 2003). The optimal solutions obtained in
this way have surprised many professional Go players, who thought they had been playing
optimally all along. Current Go programs play at the master level on a reduced 9 x 9 board,
but are still at advanced amateur level on a full board.

Bridge is a card game of imperfect information: a player’s cards are hidden from the other
players. Bridge is also a multiplayer game with four players instead of two, although the

Section 5.8.

Alternative Approaches 187

EXPLANATION-
BASED
GENERALIZATION

SCRABBLE

players are paired into two teams. As in Section 5.6, optimal play in partially observable
games like bridge can include elements of information gathering, communication, and careful
weighing of probabilities. Many of these techniques are used in the Bridge Baron program
{Smith et al., 1998), which won the 1997 computer bridge championship. While it does
not play optimally, Bridge Baron is one of the few successful game-playing systems to use
complex, hierarchical plans (see Chapter 11) involving high-level ideas, such as finessing and
squeezing, that are familiar to bridge players.

The GIB program (Ginsberg, 1999) won the 2000 computer bridge championship quite
decisively using the Monte Carlo method. Since then, other winning programs have followed
GIB’s lead. GIB’s major innovation is using explanation-based generalization to compute
and cache general rules for optimal play in various standard classes of situations rather than
evaluating each situation individually. For example, in a situation where one player has the
cards A-K-Q-J-4-3-2 of one suit and another player has 10-9-8-7-6-5, there are 7 x 6 = 42
ways that the first player can lead from that suit and the second player can follow. But GIB
treats these situations as just two: the first player can lead either a high card or a low card;
the exact cards played don’t matter. With this optimization (and a few others), GIB can solve
a 52-card, fully observable deal exactly in about a second. GIB’s tactical accuracy makes up
for its inability to reason about information. It finished 12th in a field of 35 in the par contest
(involving just play of the hand, not bidding) at the 1998 human world championship, far
exceeding the expectations of many human experts.

There are several reasons why GIB plays at expert level with Monte Carlo simulation,
whereas Kriegspiel programs do not. First, GIB’s evaluation of the fully observable version
of the game is exact, searching the full game tree, while Kriegspiel programs rely on inexact
heuristics. But far more important is the fact that in bridge, most of the uncertainty in the
partially observable information comes from the randomness of the deal, not from the adver-
sarial play of the opponent. Monte Carlo simulation handles randomness well, but does not
always handle strategy well, especially when the strategy involves the value of information.

Scrabble: Most people think the hard part about Scrabble is coming up with good words, but
given the official dictionary, it turns out to be rather easy to program a move generator to find
the highest-scoring move (Gordon, 1994). That doesn’t mean the game is solved, however:
merely taking the top-scoring move each turn results in a good but not expert player. The
problem is that Scrabble is both partially observable and stochastic: you don’t know what
letters the other player has or what letters you will draw next. So playing Scrabble well
combines the difficulties of backgammon and bridge. Nevertheless, in 2006, the QUACKLE
program defeated the former world champion, David Boys, 3-2.

5.8 ALTERNATIVE APPROACHES

Because calculating optimal decisions in games is intractable in most cases, all algorithms
must make some assumptions and approximations. The standard approach, based on mini-
max, evaluation functions, and alpha-beta, is just one way to do this. Probably because it has

188

Chapter 5. Adversarial Search

MAX
MIN 99 100
99 1000 1000 1000 100 101 102 100
| Figure 5.14 A two-ply game tree for which heuristic minimax may make an error.

been worked on for so long, the standard approach dominates other methods in tournament
play. Some believe that this has caused game playing to become divorced from the main-
stream of Al research: the standard approach no longer provides much room for new insight
into general questions of decision making. In this section, we look at the alternatives.

First, let us consider heuristic minimax. It selects an optimal move in a given search
tree provided that the leaf node evaluations are exactly correct. In reality, evaluations are
usually crude estimates of the value of a position and can be considered to have large errors
associated with them. Figure 5.14 shows a two-ply game tree for which minimax suggests
taking the right-hand branch because 100 > 99. That is the correct move if the evaluations
are all correct. But of course the evaluation function is only approximate. Suppose that
the evaluation of each node has an error that is independent of other nodes and is randomly
distributed with mean zero and standard deviation of ¢. Then when ¢ = 35, the left-hand
branch is actually better 71% of the time, and 58% of the time when ¢ = 2. The intuition
behind this is that the right-hand branch has four nodes that are close to 99; if an error in
the evaluation of any one of the four makes the right-hand branch slip below 99, then the
left-hand branch is better.

In reality, circumstances are actually worse than this because the error in the evaluation
function is not independent. If we get one node wrong, the chances are high that nearby nodes
in the tree will also be wrong. The fact that the node labeled 99 has siblings labeled 1000
suggests that in fact it might have a higher true value. We can use an evaluation function
that returns a probability distribution over possible values, but it is difficult to combine these
distributions properly, because we won’t have a good model of the very strong dependencies
that exist between the values of sibling nodes

Next, we consider the search algorithm that generates the tree. The aim of an algorithm
designer is to specify a computation that runs quickly and yields a good move. The alpha—beta
algorithm is designed not just to select a good move but also to calculate bounds on the values
of all the legal moves. To see why this extra information is unnecessary, consider a position
in which there is only one legal move. Alpha-beta search still will generate and evaluate a
large search tree, telling us that the only move is the best move and assigning it a value. But
since we have to make the move anyway, knowing the move’s value is useless. Similarly, if
there is one obviously good move and several moves that are legal but lead to a quick loss, we

Section 3.9. Summary 189

would not want alpha-beta to waste time determining a precise value for the lone good move.
Better to just make the move quickly and save the time for later. This leads to the idea of the
utility of a node expansion. A good search algorithm should select node expansions of high
utility—that is, ones that are likely to lead to the discovery of a significantly better move. If
there are no node expansions whose utility is higher than their cost (in terms of time), then
the algorithm should stop searching and make a move. Notice that this works not only for
clear-favorite situations but also for the case of symmetrical moves, for which no amount of
search will show that one move is better than another.

METAREASONING This kind of reasoning about what computations to do is called metareasoning (rea-
soning about reasoning). It applies not just to game playing but to any kind of reasoning
at all. All computations are done in the service of trying to reach better decisions, all have
costs, and all have some likelihood of resulting in a certain improvement in decision quality.
Alpha-beta incorporates the simplest kind of metareasoning, namely, a theorem to the effect
that certain branches of the tree can be ignored without loss. It is possible to do much better.
In Chapter 16, we see how these ideas can be made precise and implementable.

Finally, let us reexamine the nature of search itself. Algorithms for heuristic search
and for game playing generate sequences of concrete states, starting from the initial state
and then applying an evaluation function. Clearly, this is not how humans play games. In
chess, one often has a particular goal in mind—for example, trapping the opponent’s queen—
and can use this goal to selectively generate plausible plans for achieving it. This kind of
goal-directed reasoning or planning sometimes eliminates combinatorial search altogether.
David Wilkins” (1980) PARADISE is the only program to have used goal-directed reasoning
successfully in chess: it was capable of solving some chess problems requiring an 18-move
combination. As yet there is no good understanding of how to combine the two kinds of
algorithms into a robust and efficient system, although Bridge Baron might be a step in the
right direction. A fully integrated system would be a significant achievement not just for
game-playing research but also for Al research in general, because it would be a good basis
for a general intelligent agent.

5.9 SUMMARY

We have looked at a variety of games to understand what optimal play means and to under-
stand how to play well in practice. The most important ideas are as follows:

e A game can be defined by the initial state (how the board is set up), the legal actions
in each state, the result of each action, a terminal test (which says when the game is
over), and a utility function that applies to terminal states.

o In two-player zero-sum games with perfect information, the minimax algorithm can
select optimal moves by a depth-first enumeration of the game tree.

o The alpha-beta search algorithm computes the same optimal move as minimax, but
achieves much greater efficiency by eliminating subtrees that are provably irrelevant.

e Usually, it is not feasible to consider the whole game tree (even with alpha—beta), so we

190 Chapter 5. Adversarial Search

need to cut the search off at some point and apply a heuristic evaluation function that
estimates the utility of a state.

e Many game programs precompute tables of best moves in the opening and endgame so
that they can look up a move rather than search.

e Games of chance can be handled by an extension to the minimax algorithm that eval-
uates a chance node by taking the average utility of all its children, weighted by the
probability of each child.

e Optimal play in games of imperfect information, such as Kriegspiel and bridge, re-
quires reasoning about the current and future belief states of each player. A simple
approximation can be obtained by averaging the value of an action over each possible
configuration of missing information.

e Programs have bested even champion human players at games such as chess, checkers,
and Othello. Humans retain the edge in several games of imperfect information, such
as poker, bridge, and Kriegspiel, and in games with very large branching factors and
little good heuristic knowledge, such as Go.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The early history of mechanical game playing was marred by numerous frauds. The most
notorious of these was Baron Wolfgang von Kempelen’s (1734-1804) “The Turk,” a supposed
chess-playing automaton that defeated Napoleon before being exposed as a magician’s trick
cabinet housing a human chess expert (see Levitt, 2000). It played from 1769 to 1854. In
1846, Charles Babbage (who had been fascinated by the Turk) appears to have contributed
the first serious discussion of the feasibility of computer chess and checkers (Morrison and
Morrison, 1961). He did not understand the exponential complexity of search trees, claiming
“the combinations involved in the Analytical Engine enormously surpassed any required,
even by the game of chess.” Babbage also designed, but did not build, a special-purpose
machine for playing tic-tac-toe. The first true game-playing machine was built around 1890
by the Spanish engineer Leonardo Torres y Quevedo. It specialized in the “KRK” (king and
rook vs. king) chess endgame, guaranteeing a win with king and rook from any position.
The minimax algorithm is traced to a 1912 paper by Emst Zermelo, the developer of
modermn set theory. The paper unfortunately contained several errors and did not describe min-
imax correctly. On the other hand, it did lay out the ideas of retrograde analysis and proposed
(but did not prove) what became known as Zermelo’s theorem: that chess is determined—
White can force a win or Black can or it is a draw; we just don’t know which. Zermelo says
that should we eventually know, “Chess would of course lose the character of a game at all.”
A solid foundation for game theory was developed in the seminal work Theory of Games
and Economic Behavior (von Neumann and Morgenstern, 1944), which included an analysis
showing that some games require strategies that are randomized (or otherwise unpredictable).

See Chapter 17 for more information.

Bibliographical and Historical Notes 191

John McCarthy conceived the idea of alpha—beta search in 1956, although he did not
publish it. The NSS chess program (Newell et al., 1958) used a simplified version of alpha-
beta; it was the first chess program to do so. Alpha—beta pruning was described by Hart and
Edwards (1961) and Hart et al. (1972). Alpha—beta was used by the “Kotok—McCarthy” chess
program written by a student of John McCarthy (Kotok, 1962). Knuth and Moore (1975)
proved the correctness of alpha—beta and analysed its time complexity. Pearl (1982b) shows
alpha—beta to be asymptotically optimal among all fixed-depth game-tree search algorithms.

Several attempts have been made to overcome the problems with the “standard ap-
proach” that were outlined in Section 5.8. The first nonexhaustive heuristic search algorithm
with some theoretical grounding was probably B* (Berliner, 1979), which attempts to main-
tain interval bounds on the possible value of a node in the game tree rather than giving it
a single point-valued estimate. Leaf nodes are selected for expansion in an attempt to re-
fine the top-level bounds until one move is “clearly best.” Palay (1985) extends the B* idea
using probability distributions on values in place of intervals. David McAllester’s (1988)
conspiracy number search expands leaf nodes that, by changing their values, could cause
the program to prefer a new move at the root. MGSS* (Russell and Wefald, 1989) uses the
decision-theoretic techniques of Chapter 16 to estimate the value of expanding each leaf in
terms of the expected improvement in decision quality at the root. It outplayed an alpha—
beta algorithm at Othello despite searching an order of magnitude fewer nodes. The MGSS*
approach is, in principle, applicable to the control of any form of deliberation.

Alpha-beta search is in many ways the two-player analog of depth-first branch-and-
bound, which is dominated by A* in the single-agent case. The SSS* algorithm (Stockman,
1979) can be viewed as a two-player A* and never expands more nodes than alpha—beta to
reach the same decision. The memory requirements and computational overhead of the queue
make SSS* in its original form impractical, but a linear-space version has been developed
from the RBEFS algorithm (Korf and Chickering, 1996). Plaat et al. (1996) developed a new
view of SS§* as a combination of alpha—beta and transposition tables, showing how to over-
come the drawbacks of the original algorithm and developing a new variant called MTD(f)
that has been adopted by a number of top programs.

D. F. Beal (1980) and Dana Nau (1980, 1983) studied the weaknesses of minimax ap-
plied to approximate evaluations. They showed that under certain assumptions about the dis-
tribution of leaf values in the tree, minimaxing can yield values at the root that are actually less
reliable than the direct use of the evaluation function itself. Pearl’s book Heuristics (1984)
partially explains this apparent paradox and analyzes many game-playing algorithms. Baum
and Smith (1997) propose a probability-based replacement for minimax, showing that it re-
sults in better choices in certain games. The expectiminimax algorithm was proposed by
Donald Michie (1966). Bruce Ballard (1983) extended alpha—beta pruning to cover trees
with chance nodes and Hauk (2004) reexamines this work and provides empirical results.

Koller and Pfeffer (1997) describe a system for completely solving partially observ-
able games. The system is quite general, handling games whose optimal strategy requires
randomized moves and games that are more complex than those handled by any previous
system. Still, it can’t handle games as complex as poker, bridge, and Kriegspiel. Frank
et al. (1998) describe several variants of Monte Carlo search, including one where MIN has

192

Chapter 5. Adversarial Search

complete information but MAX does not. Among deterministic, partially observable games,
Kriegspiel has received the most attention. Ferguson demonstrated hand-derived random-
ized strategies for winning Kriegspiel with a bishop and knight (1992) or two bishops (1995)
against a king. The first Kriegspiel programs concentrated on finding endgame checkmates
and performed AND-OR search in belief-state space (Sakuta and lida, 2002; Bolognesi and
Ciancarini, 2003). Incremental belief-state algorithms enabled much more complex midgame
checkmates to be found (Russell and Wolfe, 2005; Wolfe and Russell, 2007), but efficient
state estimation remains the primary obstacle to effective general play (Parker et al., 2005).

Chess was one of the first tasks undertaken in Al, with early efforts by many of the pio-
neers of computing, including Konrad Zuse in 1945, Norbert Wiener in his book Cybernetics
(1948), and Alan Turing in 1950 (see Turing er al., 1953). But it was Claude Shannon’s
article Programming a Computer for Playing Chess (1950) that had the most complete set
of ideas, describing a representation for board positions, an evaluation function, quiescence
search, and some ideas for selective (nonexhaustive) game-tree search. Slater (1950) and the
commentators on his article also explored the possibilities for computer chess play.

D. G. Prinz (1952) completed a program that solved chess endgame problems but did
not play a full game. Stan Ulam and a group at the Los Alamos National Lab produced a
program that played chess on a 6 x 6 board with no bishops (Kister e al., 1957). It could
search 4 plies deep in about 12 minutes. Alex Bermnstein wrote the first documented program
to play a full game of standard chess (Bernstein and Roberts, 1958).

The first computer chess match featured the Kotok-McCarthy program from MIT (Ko-
tok, 1962) and the ITEP program written in the mid-1960s at Moscow’s Institute of Theo-
retical and Experimental Physics (Adelson-Velsky et al., 1970). This intercontinental match
was played by telegraph. It ended with a 31 victory for the ITEP program in 1967. The first
chess program to compete successfully with humans was MIT’s MACHACK-6 (Greenblatt
et al., 1967). Tts Elo rating of approximately 1400 was well above the novice level of 1000.

The Fredkin Prize, established in 1980, offered awards for progressive milestones in
chess play. The $5,000 prize for the first program to achieve a master rating went to BELLE
(Condon and Thompson, 1982), which achieved a rating of 2250. The $10,000 prize for the
first program to achieve a USCF (United States Chess Federation) rating of 2500 (near the
grandmaster level) was awarded to DEEP THOUGHT (Hsu ef al., 1990) in 1989. The grand
prize, $100,000, went to DEEP BLUE (Campbell et al., 2002; Hsu, 2004) for its landmark
victory over world champion Garry Kasparov in a 1997 exhibition match. Kasparov wrote:

The decisive game of the match was Game 2, which left a scar in my memory . .. we saw
something that went well beyond our wildest expectations of how well a computer would
be able to foresee the long-term positional consequences of its decisions. The machine
refused to move to a position that had a decisive short-term advantage—showing a very
human sense of danger. (Kasparov, 1997)

Probably the most complete description of a modem chess program is provided by Ernst
Heinz (2000), whose DARKTHOUGHT program was the highest-ranked noncommercial PC

program at the 1999 world championships.

5 A Russian program, BESM may have predated Bemstein’s program.

Bibliographical and Historical Notes 193

(b)

Figure 5.15 Pioneers in computer chess: (a) Herbert Simon and Allen Newell, developers
of the NSS program (1958); (b) John McCarthy and the Kotok-McCarthy program on an
IBM 7090 (1967).

In recent years, chess programs are pulling ahead of even the world’s best humans.
In 2004-2005 HYDRA defeated grand master Evgeny Vladimirov 3.5-0.5, world champion
Ruslan Ponomariov 2-0, and seventh-ranked Michael Adams 5.5-0.5. In 2006, DEEP FRITZ
beat world champion Vladimir Kramnik 4-2, and in 2007 RYBKA defeated several grand
masters in games in which it gave odds (such as a pawn) to the human players. As of 2009,
the highest Elo rating ever recorded was Kasparov’s 2851. HYDRA (Donninger and Lorenz,
2004) is rated somewhere between 2850 and 3000, based mostly on its trouncing of Michael
Adams. The RYBKA program is rated between 2900 and 3100, but this is based on a small
number of games and is not considered reliable. Ross (2004) shows how human players have
learned to exploit some of the weaknesses of the computer programs.

Checkers was the first of the classic games fully played by a computer. Christopher
Strachey (1952) wrote the first working program for checkers. Beginning in 1952, Arthur
Samuel of IBM, working in his spare time, developed a checkers program that learned its
own evaluation function by playing itself thousands of times (Samuel, 1959, 1967). We
describe this idea in more detail in Chapter 21. Samuel’s program began as a novice but
after only a few days’ self-play had improved itself beyond Samuel’s own level. Tn 1962 it
defeated Robert Nealy, a champion at “blind checkers,” through an error on his part. When
one considers that Samuel’s computing equipment (an IBM 704) had 10,000 words of main
memory, magnetic tape for long-term storage, and a .000001 GHz processor, the win remains
a great accomplishment.

The challenge started by Samuel was taken up by Jonathan Schaeffer of the University
of Alberta. His CHINOOK program came in second in the 1990 U.S. Open and earned the
right to challenge for the world championship. It then ran up against a problem, in the form
of Marion Tinsley. Dr. Tinsley had been world champion for over 40 years, losing only
three games in all that time. In the first match against CHINOOK, Tinsley suffered his fourth

194

Chapter 5. Adversarial Search

and fifth losses, but won the match 20.5-18.5. A rematch at the 1994 world championship
ended prematurely when Tinsley had to withdraw for health reasons. CHINOOK became the
official world champion. Schaeffer kept on building on his database of endgames, and in
2007 “solved” checkers (Schaeffer et al., 2007, Schaeffer, 2008). This had been predicted by
Richard Bellman (1965). In the paper that introduced the dynamic programming approach
to retrograde analysis, he wrote, “In checkers, the number of possible moves in any given
situation is so small that we can confidently expect a complete digital computer solution to
the problem of optimal play in this game.” Bellman did not, however, fully appreciate the
size of the checkers game tree. There are about 500 quadrillion positions. After 18 years
of computation on a cluster of 50 or more machines, Jonathan Schaeffer’s team completed
an endgame table for all checkers positions with 10 or fewer pieces: over 39 trillion entries.
From there, they were able to do forward alpha-beta search to derive a policy that proves
that checkers is in fact a draw with best play by both sides. Note that this is an application
of bidirectional search (Section 3.4.6). Building an endgame table for all of checkers would
be impractical: it would require a billion gigabytes of storage. Searching without any table
would also be impractical: the search tree has about 847 positions, and would take thousands
of years to search with today’s technology. Only a combination of clever search, endgame
data, and a drop in the price of processors and memory could solve checkers. Thus, checkers
joins Qubic (Patashnik, 1980), Connect Four (Allis, 1988), and Nine-Men’s Morris (Gasser,
1998) as games that have been solved by computer analysis.

Backgammon, a game of chance, was analyzed mathematically by Gerolamo Cardano
(1663), but only taken up for computer play in the late 1970s, first with the BKG pro-
gram (Berliner, 1980b); it used a complex, manually constructed evaluation function and
searched only to depth 1. It was the first program to defeat a human world champion at a ma-
jor classic game (Berliner, 1980a). Berliner readily acknowledged that BKG was very lucky
with the dice. Gerry Tesauro’s (1995) TD-GAMMON played consistently at world champion
level. The BGBLITZ program was the winner of the 2008 Computer Olympiad.

Go is a deterministic game, but the large branching factor makes it challeging. The key
issues and early literature in computer Go are summarized by Bouzy and Cazenave (2001) and
Miiller (2002). Up to 1997 there were no competent Go programs. Now the best programs
play most of their moves at the master level; the only problem is that over the course of a
game they usually make at least one serious blunder that allows a strong opponent to win.
Whereas alpha—-beta search reigns in most games, many recent Go programs have adopted
Monte Carlo methods based on the UCT (upper confidence bounds on trees) scheme (Kocsis
and Szepesvari, 2006). The strongest Go program as of 2009 is Gelly and Silver’s MOGO
(Wang and Gelly, 2007; Gelly and Silver, 2008). In August 2008, MOGO scored a surprising
win against top professional Myungwan Kim, aibeit with MOGO receiving a handicap of
nine stones (about the equivalent of a queen handicap in chess). Kim estimated M0OGO’s
strength at 2-3 dan, the low end of advanced amateur. For this match, MOGO was run on
an 800-processor 15 teraflop supercomputer (1000 times Deep Blue). A few weeks later,
MoGo, with only a five-stone handicap, won against a 6-dan professional. In the 9 x 9 form
of Go, M0GO is at approximately the 1-dan professional level. Rapid advances are likely
as experimentation continues with new forms of Monte Carlo search. The Computer Go

Exercises

195

Newsletter, published by the Computer Go Association, describes current developments.

Bridge: Smith er al. (1998) report on how their planning-based program won the 1998
computer bridge championship, and (Ginsberg, 2001) describes how his GIB program, based
on Monte Carlo simulation, won the following computer championship and did surprisingly
well against human players and standard book problem sets. From 2001-2007, the computer
bridge championship was won five times by JACK and twice by WBRIDGES. Neither has
had academic articles explaining their structure, but both are rumored to use the Monte Carlo
technique, which was first proposed for bridge by Levy (1989).

Scrabble: A good description of a top program, MAVEN, is given by its creator, Brian
Sheppard (2002). Generating the highest-scoring move is described by Gordon (1994), and
modeling opponents is covered by Richards and Amir (2007).

Soccer (Kitano et al., 1997b; Visser et al., 2008) and billiards (Lam and Greenspan,
2008; Archibald er al., 2009) and other stochastic games with a continuous space of actions
are beginning to attract attention in Al, both in simulation and with physical robot players.

Computer game competitions occur annually, and papers appear in a variety of venues.
The rather misleadingly named conference proceedings Heuristic Programming in Artificial
Intelligence report on the Computer Olympiads, which include a wide variety of games. The
General Game Competition (Love et al., 2006) tests programs that must learn to play an un-
known game given only a logical description of the rules of the game. There are also several
edited collections of important papers on game-playing research (Levy, 1988a, 1988b; Mars-
land and Schaeffer, 1990). The International Computer Chess Association (ICCA), founded
in 1977, publishes the /CGA Journal (formerly the ICCA Journal). Important papers have
been published in the serial anthology Advances in Computer Chess, starting with Clarke
(1977). Volume 134 of the journal Artificial Intelligence (2002) contains descriptions of
state-of-the-art programs for chess, Othello, Hex, shogi, Go, backgammon, poker, Scrabble,
and other games. Since 1998, a biennial Computers and Games conference has been held.

EXERCISES

5.1 Suppose you have an oracle, OM(s), that correctly predicts the opponent’s move in
any state. Using this, formulate the definition of a game as a (single-agent) search problem.
Describe an algorithm for finding the optimal move.

5.2 Consider the problem of solving two 8-puzzles.

a. Give a complete problem formulation in the style of Chapter 3.
b. How large is the reachable state space? Give an exact numerical expression.

c¢. Suppose we make the problem adversarial as follows: the two players take turns mov-
ing; a coin is flipped to determine the puzzle on which to make a move in that turn; and
the winner is the first to solve one puzzle. Which algorithm can be used to choose a
move in this setting?

d. Give an informal proof that someone will eventually win if both play perfectly.

