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Abstract - Computer component fabrication is 
approaching physical limits of traditional 
photolithographic fabrication techniques.  An alternative 
computer architecture may be enabled by the rapidly 
maturing field of nanotechnology, and consist of nano-
mechanical computational machines similar to those first 
proposed by Eric Drexler, or other nanoscale components.  
In this study, we propose the design of a nanocompiler 
which targets a simulated hydrocarbon assembler.  The 
compiler framework and resulting nano-mechanical 
machine is simulated using a component-level Colored 
Petri Net model of a 32-bit adder and an atomic-level gate 
simulator.  Future work is proposed to extend the 
framework to simulate a full range nano-mechanical 
processing components. 

Keywords: Nanocompilers, nanocomputers, high 
performance computing, reconfigurable computing. 

 

1 Introduction 
Despite recent significant advancements in feature size 

to 45nm [13], there is growing consensus that the familiar 
density-doubling prediction of Moore’s Law as it concerns 
2D fabrication techniques is reaching limits [10,11]. 
Evidence is abundant of a shift away from developing 
techniques that fit increasing numbers of transistors onto a 
chip, as manufacturers pursue technology that enables 
increasing numbers of processing cores on a single chip 
[12,14]. The movement toward increased coarse-grained 
parallelism, the nearing of inherent limits of 
photolithographic techniques, and the continued maturation 
of the field of nanotechnology, could hint at a serendipitous 
convergence of needs and capabilities. 

The way forward in chip design and fabrication may 
well include applied computational nanotechnology as 
originally foreseen by Eric Drexler [6], and furthered by 
many others [2,7,19,23].  Current chip design techniques, 
and in fact virtually all software and hardware design of 
any significance, make use of a variety of automated 
compiler tools to generate complex designs, layouts or 
executable code from an original human-readable 
specification or source program [11].  Molecular 

manufacturing, and other applications of nanotechnology, 
are likely to require a similar approach in order to manage 
the scope and complexity of translating a high-level 
processor specification into nanoscale components. 

Modern compilers for high performance computer 
architectures apply a sequence of sophisticated analyses 
and optimizations to translate a source language program 
into efficient binary machine code.  Machine specific 
optimizations, customized to the particular target 
architecture, are required to achieve significant speedup on 
modern, high-performance architectures [1,11].  In spite of 
the excitement over recent advances in feature-size 
reduction [12,13], heat dissipation and barriers of physics 
remain as problems [2,10]. 

Nanotechnology, manufacturing performed through 
manipulation of atoms and molecules, or through other 
nanoscale manufacturing techniques, is capable of 
overcoming these barriers [6].  The continuing trend toward 
flexible computer architectures with higher degrees of 
parallelism suggests that the field of reconfigurable 
computing, perhaps enabled through the use of 
nanotechnology, is the next evolutionary step in processor 
design [2,5]. 

Nanocomputing is taken to mean the class of highly 
reconfigurable, nanotechnology-based, computer 
architectures, and a nanocompiler is the software-hardware 
system that targets such a nanocomputer.  In this paper, we 
present the design of a nanocompiler framework that targets 
one form of nanoscale computer architecture, nano-
mechanical computing devices. 

This form of a compiler framework translates a source 
code program into both an optimized executable program 
and a customized nanocomputer on which the executable 
program will be ideally suited to run.  Much as traditional 
compilers customize the program to suit the machine [1], 
this proposed compiler customizes the machine to fit the 
program.  Since no such nanocomputer architecture yet 
exists, our study demonstrates the approach using a 
molecular design language, a simulated hydrocarbon 
assembler, and a mathematical modeling tool to 
demonstrate and estimate the performance of this approach. 



2 Background 
Nanocomputer architectures, which form a subset of 

reconfigurable architectures that include FPGA, FCCM, 
cellular array, synthetic neural systems and many others 
[5,7], are produced using some form of a molecular 
manufacturing and provide a natural successor to current 
general-purpose microprocessor architectures [7].  
Nanocomputers, of course, must be functionally at least as 
capable as their predecessors, fast, inexpensive, robust and 
capable of operating at room temperature and of executing 
legacy code [2].  In order to produce such nanoscale 
architectures, molecular manufacturing and 
mechanosynthesis techniques must be understood, 
including the use of hydrocarbon assemblers.  As this 
technology is in its infancy, the use of a variety of research 
tools to model and simulate the proposed architecture is 
required. 

2.1 Nanoscale computer architectures 
Among the proposed nanoscale computer architectures 

are silicon-based resonant-tunneling devices (RTDs), 
consisting of tunneling diodes paired with field-effect 
transistors (FETs) [2], carbon nanotube semiconductors [4], 
diamondoid carbon transistors synthesized using Chemical 
Vapor Deposition (CVD) techniques [18], and novel nano-
mechanical computing devices consisting of moving, 
nanoscale components [6], reminiscent of Charles 
Babbage’s Analytical Engine [11], albeit nine or ten orders 
of magnitude smaller.  Although all of these potential 
technologies hold promise, all but nano-mechanical devices 
are constrained to two dimensions, limiting their potential 
for improvement over time in the same way that current 
photolithographic techniques are limited. 

Nano-mechanical devices such as logic gates and 
registers will be constructed from a series of molecular 
logic rods called interlocks and driven by kinetic forces [6].  
Although this atomic-scale computational machinery will 
operate more slowly than traditional electronic devices, the 
difference will be only approximately one order of 
magnitude due to its much smaller size.  Nano-mechanical 
devices can have much higher densities since interlock 
logic gates can be stacked in three dimensions, while 
transistors must be placed on a 2-dimensional substrate. 

The density of nano-mechanical devices is estimated to 
be 1011 greater than that of silicon transistor devices, 
enabling the very real potential to produce massively 
parallel networks of nanoscale processors [6].  Other 
benefits to nano-mechanical computing architectures 
include precision, tolerance to physical wear, improved 
fault tolerance, and broad understanding of mechanics and 
motion in general [17]. 

The interlocks used for logic gates as described in 
Drexler’s architecture consist of sliding rods that have knob 
protrusions which slide between one another.  Depending 
on their position, one rod may block another or allow a rod 

to continue sliding along its vector of movement, with input 
and output provided by additional interlock rods, all 
enclosed in a stiff housing.  Rods can be combined easily to 
form a logic gate that computes the output of a NAND 
operation, a logical component from which all other logical 
operations can be constructed.  Estimates for clock speeds 
of nano-mechanical logic gates are 1000 MIPS, or 
approximately 1 GHz.  The ability to fabricate in three 
dimensions means that massively parallel processors could 
be formed in very dense volumes.  A complete nano-
mechanical CPU system of 106 logic gate “transistors” 
forming a cube 400 nm on a side, with each logic gate 
being smaller than a single rhinovirus, would fit in the same 
surface area as 80 transistors at the 45 nm scale. [6] 

2.2 Mechanosynthesis and assemblers 
 Building molecular mechanical computers with 

atomic precision will require direct control of the chemical 
reactions that occur between atoms and molecules.  The 
process of manufacturing machinery through such methods 
is known as Molecular Manufacturing [18].  So far, 
chemistry has relied on methods of controlled, probabilistic 
reactions resulting from collisions between masses of atoms 
in order to synthesize useful compositions, but without 
guarantee of atomic precision.  Mechanosynthesis is 
performed using atomically precise tools that rely on 
chemical bonding to produce positionally controlled 
mechanical forces [9], which would be used to synthesize 
useful molecules from their constituent atoms, as well as 
higher-order structures [18]. 

Ideally, mechanosynthesis would be performed using a 
Universal Constructor, a nano-mechanical computer 
controlled machine that could follow sequences of 
instructions to assemble raw atomic material into arbitrary 
molecular structures, including exact copies of itself [17].  
Drexler's proposal for a general-purpose molecular 
assembler is an example of such a constructor [6,17], an 
approach that is reminiscent of Alan Turing’s notion of a 
Universal Machine which eventually led to the modern, 
stored-program computer [11]. 

Research has focused on the hydrocarbon assembler, 
which is simplified universal constructor that builds 
diamondoid structures [6], including copies of itself.  The 
small molecular computers in each assembler are controlled 
by a broadcast mechanism emanating from a macroscale 
computer.  In this “broadcast architecture,” instructions 
from the macroscale controller are passed through acoustic 
waves that vibrate through a liquid environment 
surrounding the assemblers.  The instructions are received 
by mechanical pressure-actuated devices in the assemblers.  
These pressure activated devices initiate instructions to the 
mechanical logic units in the assembler computer.  As a 
result, the assembler can be reprogrammed to make 
different molecular structures [19]. 



2.3 Modeling and simulation of structures 
Molecular machinery can require billions of atoms in 

the final design.  Thus, there is a need for a set of 
“molecular compilers,” which take a high level of 
abstraction input for molecular components and transform 
them into atomically positioned devices [5].  To enable 
high-level specification of nano-mechanical structures, an 
abstract scripting language, MolML, was developed that 
can be compiled into hydrocarbon assembler instructions 
[24].  MolML is an Extensible Markup Language (XML) 
based language that is designed to factor out the 
redundancy in molecular structures that have large amounts 
of symmetry and repetition.  The language is written to 
provide communication between a macroscale computer 
and a molecular assembler, facilitating the correspondence 
of input instructions to the assembler.  Using MolML, it is 
possible to define 3-dimensional molecular structures of 
arbitrary complexity [24]. 

In order to visualize and simulate the molecular 
structures defined with MolML, a software tool was 
developed to parse, display and animate a MolML design.  
The MolSim tool [24] implements basic Newtonian Laws 
by using vector geometries, accounting for the position, 
velocity, and acceleration of particles in the simulation 
environment.  The simulation engine was tested against a 
MolML document that defined the structure of Drexler’s 
nano-mechanical NAND gates, using the tetrahedral lattice 
molecular structure of rigid diamond molecules to form the 
logic rods.  For efficiency concerns, the housing was 
omitted.  The molecular design was inspired from an 
examination of the repetitive symmetries inherent in the 
lattice [7]. 

Simulation of atomic interactions and molecular 
structures in the current version of MolSim is infeasible for 
larger structures, so these larger structures such as adders 
can be constructed as formal, mathematical models using 
Colored Petri Nets (CPNs) [15].  Petri Nets provide a 
modeling language that is well suited for larger systems, 
drawing on the power of generalization provided by 
mathematical modeling techniques.  In practice, a CPN 
model is created using a graphical tool [20], enabling visual 
representation and analysis of a CPN model.  With the 
addition of timing parameters, CPN can realistically model 
the function of a nano-mechanical NAND gate and higher-
order molecular structures constructed hierarchically by 
reusing the NAND model in varying configurations. 

3 Nanocompiler Design 
The two major goals of the work reported in this paper 

are refinement of the design of a nanocompiler [25] and a 
simulation of a common nano-mechanical component that 
can be generated by the nanocompiler.  Our nanocompiler 
design generates as its output both as an executable version 
of the original source program and the description of a 
machine on which the executable will run.  Traditional 

compilers take the source code and translate it into a binary 
form suitable for a specific processor, optimized to run as 
well as possible on that target machine.  Knowledge of the 
target machine is needed to perform machine-dependent 
optimizations.  Our approach is a generalization of 
compilation for reconfigurable computing in that the 
configuration of the target machine is unknown when 
compilation begins.  The machine configuration is extracted 
from the source program, based on analyses of program 
characteristics.  In this way, the resulting machine is an 
excellent fit to the program. 

Figure 1 illustrates the organization of the proposed 
nanocompiler from a high level.  Source code is processed 
by the Front end of the compiler, including machine-
independent optimizations.  The resulting intermediate form 
is passed to a Machine requirements analysis phase, which 
performs static analysis, providing metrics to the Machine 
description generation phase.  The resulting machine 
description is used by the Processor generator phase to 
generate or reconfigure the target machine, and by the 
compiler Back end to perform machine-dependent 
optimizations and generate the executable code.  The 
Processor generator and even runtime profiling information 
can feed information back into the Machine requirements 
analysis phase to enable iterative refinement of the machine 
description, and thus of the processor itself. 
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Figure 1. Organization of nanocompiler 

Inside the Processor generator (Figure 2), a machine is 
reconfigured or generated using a nanotechnology 
approach.  The machine description is analyzed through a 
sequence of phases that translate the description into a 
layout of circuits (e.g., VHDL) or other structures (e.g., 
MolML) that implement the machine.  The resulting 
abstract layout, in turn, is implemented using logic gates, 
which are either reconfigured as with FPGAs or assembled 
using molecular manufacturing techniques, to produce the 
target processor.  In the current implementation, we focus 
on generation of a nano-mechanical machine description 
for the addition instruction. 
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based processor generator 

Thus, we restrict the scope of the research results 
reported in this paper to the machine description and 
processor generation phases, and more specifically on how 
a machine description for low-level components, nano-
mechanical NAND gates, can be combined into a higher-
level component, a 32-bit nano-mechanical adder. 

4 Simulation of 32-bit Adder 
Simulation of a 32-bit nano-mechanical adder was 

accomplished through a sequence of four developmental 
stages:  nano-mechanical NAND gate, CPN model of a 
NAND gate, CPN model of a 1-bit adder, and a CPN model 
of a 32-bit adder.  In the first stage of development, an 
atomic-level nano-mechanical description language 
(MolML) and a simulation tool (MolSim) were designed, 
enabling a realistic, visual modeling of a single NAND gate 
(Figure 3). 

 

 
Figure 3. MolSim model of NAND gate 

By extending earlier work on MolSim [24], we created 
an atomic and molecular description of a NAND gate that 
could be generated given a few positional parameters, 
which is then translated by MolSim into the full atomic and 
molecular description that details placement and 
configuration of each atom and molecule. 

Based on proposed functional parameters [6], a variety 
of characteristics are provided in Table 1.  Although a 
NAND gate can be constructed using just 244 Carbon 
atoms, the housing which encloses the gate is required, 
needing a very roughly estimated 16,140 atoms (x=32, 
y=32, z=16, less 244).  The proposed speed for a nano-
mechanical processor is approximately 1 ns per operation, 
operating at 1000 MIPS, or 1 GHz, with logic and 
arithmetic operations requiring about 1 ns [6].  We assume 
0.1 ns per NAND calculation, with 0.2 ns for reset latency.  
A single NAND gate fits in about 16 nm3, so 6.25e+16 
such components can fit in a single cubic millimeter.  
Clearly this is a much higher density that the current best 
feature size of 45 nm. 

 
Table 1. Estimated characteristics of  
nano-mechanical NAND gate model 

Time to perform operation 
   (Transistors require 0.01 ns) 0.1 ns 

Time to reset (2x op time) 0.2 ns 

Surface area of gate 
   (Transistors each require 106 
nm2) 

4 nm2 

Volume of gate 
   (gates are stackable in 3D) 16 nm3 

Improvement in volumetric packing 
density compared to transistors >1011 

 

In the second stage, CPN was used to model the same 
NAND gate at a higher level of abstraction (Figure 4), but 
with identical behavior characteristics.  Time units are 
measured by the addition of a timestamp notation to the 
NAND gate, such that the function of each NAND gate 
accounts for one unit of time.  Time units accumulate 
during the simulation, enabling straightforward scaling to 
other time units as needed.  Because of the nature of the 
binary calculations being performed, the NAND gate was 
designed to operate on Boolean, rather than decimal, 
values. 

In the third stage, a CPN model was constructed of a 1-
bit adder by connecting nine NAND gate models in a 
standard adder configuration (Figure 5).  Time 
measurement of the NAND gate model produced output of 
a carry value in 5 units of time, and a sum value in 6 time 
units, which translates to a total time of 0.6 ns to perform a 
1-bit addition. 
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Figure 5. CPN model of 1-bit Adder 

 
 

In the fourth and final stage, a CPN model of a 32-bit 
adder was constructed using the hierarchical features of 
CPN Tool, combining four 1-bit adders into a 4-bit adder, 
then four 4-bit adders in a 16-bit adder, and finally two 16-
bit adders into a 32-bit adder (Figure 6).  Timing for 
addition of two 32 bit values was a total of 68 time units, 
which is generalized to the equation: 2(n-1)+6, where n is 
the number of bits.  Although the carry value requires 5 
units to calculate in each individual adder, because 
calculation of the sum does not require the previous carry 
for the first 3 time units, significant overlapping (i.e., 
parallel) computation occurs. 

Table 2 summarizes selected characteristics, providing 
initial estimates.  Based on our models, and other proposed 
characteristics [6], a 32-bit nano-mechanical adder requires 
288 NAND gates connected using roughly 96 connector 
rods, possibly constructed of nanotubes.  The models 
predict 6.8 ns per addition, with latency between the start of 
subsequent additions of 7.0 ns, including the 0.2 ns reset 
time. 

Drexler’s proposed CPU requires approximately 1 ns 
per operation [6], suggesting that some amount of 
parallelism may be inherent in a nano-mechanical adder 
that is not captured in the current model.  At this estimated 
size, 2e+14 such adders would fit in a volume of one cubic 
millimeter.  Extrapolating these values, the 32-bit adder 
model is within specification of a proposed nano-
mechanical CPU that would be contained in a cube 400 nm 
on a side [6]. 

Designing nano-mechanical computer components at 
this scale raises a number of important issues that may need 
to be addressed in future research, all of which can lead to 
further such lists, including: 

• Compilation time – Determine time needed to analyze 
source code, produce a machine specification, and 
fabricate components using hydrocarbon assemblers, 
which can enable near-exponential assembly capability 
through an initial self-replication process. 
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Figure 6. CPN model of 32-bit Adder 

Table 2. Estimated characteristics of 32-bit 
nano-mechanical adder model 

Total NAND gates @ 16 nm3 288 
Total connectors @ 1 nm3 96 
Estimated volume 
   (approx 16 nm cube) 

4,704 nm3 

Estimated time for 1-bit 
addition 

0.6 ns 

Time to perform 32-bit 
addition based on simulation 

6.8 ns 

Predicted time of 32-bit 
addition [6] 

1 ns 

Estimated throughput 142 MIPS 
Predicted throughput [6] 1000 MIPS  



• Design feasibility – Determine whether Drexler’s and 
Merkle’s analysis of feasibility is correct, and identify 
what technology must be developed to construct a 
complete, working nanocompiler.  Extend 2-D 
fabrication to an understanding of 3-D fabrication made 
possible with mechanical components. 

• Performance efficiency – Determine the efficiency of 
inherently slower nano-mechanical processing, and 
evaluate for potential benefit to speedup through higher 
degrees of parallelism, and predict throughput and 
related latencies.  Design models that accurately reflect 
predicted behavior. 

• Requirements analysis – Determine what essential 
information is needed in the compiler, including 
analyses performed for parallelization, resource 
requirements, and efficiently scalable reconfiguration 
and fabrication. 

• Usability of massive parallelism – Identify approaches 
that can successfully utilize the extreme parallelism that 
may be available, including integration of ILP, thread-
level and task-level parallelism. 

 
5 Related Work 

Research strongly suggests that reconfigurable 
architectures, including nanocomputing, are likely to 
provide a better fit and allow continued performance 
improvements for general purpose computation. [2,3,5,7].  
Design space exploration as applied to compilation for 
FPGA-based and other reconfigurable architectures 
demonstrates the performance improvements possible with 
customized architectures [16,21,22].  The concept of 
“program in, chip out” (PICO) relies on compiler analysis, 
particularly targeted automatic parallelism, to identify 
program fragments that will benefit most from customized 
hardware [16].  While PICO targets primarily embedded 
processors and uses design space exploration, our approach 
envisions a desktop or embedded computer that 
reconfigures its own hardware to any arbitrary 
configuration, using machine requirements analysis and 
nanotechnology. This process may resemble FPGA 
reconfigurability, or physical molecular reassembly, 
performed at compile-time or run-time. 

An innovative approach to large-scale, homogeneous, 
undifferentiated, reconfigurable architecture improves upon 
FPGAs using a less expensive nanoscale cell matrix 
approach [7].  This work describes how networks of 
atomic-scale switches can be configured in parallel and 
used to fabricate scalable processors that are customized to 
specific tasks.  Our research can be targeted to a 
nanocomputer cell matrix architecture, focusing on use of 
the compiler to automatically generate reconfiguration 
instructions. 

The field of nanotechnology is quite active and rapidly 
advancing, with frequent accomplishments being made in 
many disciplines including medicine, pharmaceuticals, 
chemistry, physics, and of course, computer engineering 
[8], although most are chemistry-based, rather than nano-
mechanical.  Our research attempts to pursue basic and 
applied nancompiler research, focusing on applied 
molecular manufacturing techniques. Continued research in 
this area in the near future will require more powerful 
modeling and simulation tools.  Although CPN provides a 
flexible framework for modeling, true molecular models 
that more accurately depict the underlying physics and 
enable large-scale simulation are needed.  A variety of tools 
are available for molecular modeling and simulation 
(nanohub.org), with a promising recent tool being 
Nanorex’s NanoEngineer (nanorex.com). 

6 Summary and Future Work 
Reconfigurable computing is a rapidly advancing area, 

and the promise of nanotechnology is being recognized.  In 
this paper, we have proposed the design of a nanocompiler 
framework, and demonstrated how molecular computing 
components can be generated from a higher-level 
representation, such as source code.  Although this research 
was limited to simulation of a nano-mechanical 32-bit 
adder, the same approach can be used to generate the full 
range of components needed to construct an arbitrarily 
complex nano-mechanical multi-processor.  With the 
significant flexibility and capability of nanocomputers, it 
seems that the responsibility for guiding the configuration 
will fall to the compiler, and this research demonstrates the 
feasibility of that approach.  Where once the compiler 
customized the program to suit the machine, the compiler 
will soon fully customize the machine to suit the program, 
extending code generation to include code that will 
reconfigure, or even guide the design and fabrication of the 
processor itself. 

We are planning extensive research and 
experimentation in the area of nanocompiler design and 
molecular nano-mechanical machine generation, including 
program characterization analysis and automatic 
parallelization, with a long-term goal of compiler control of 
physical, molecular assembly hardware such as STMs and 
their descendants.  Models for other components, including 
logic units, multipliers, and memory, are being developed 
using Colored Petri Nets, with plans also to use 
NanoEngineer. 
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