
Compiling a Mechanical Nanocomputer Adder

Thomas P. Way and Tao Tao
Applied Computing Technology Laboratory

Department of Computing Sciences
Villanova University, Villanova, PA 19085

{thomas.way,tao.tao}@villanova.edu

Abstract - Computer component fabrication is
approaching physical limits of traditional
photolithographic fabrication techniques. An alternative
computer architecture may be enabled by the rapidly
maturing field of nanotechnology, and consist of nano-
mechanical computational machines similar to those first
proposed by Eric Drexler, or other nanoscale components.
In this study, we propose the design of a nanocompiler
which targets a simulated hydrocarbon assembler. The
compiler framework and resulting nano-mechanical
machine is simulated using a component-level Colored
Petri Net model of a 32-bit adder and an atomic-level gate
simulator. Future work is proposed to extend the
framework to simulate a full range nano-mechanical
processing components.

Keywords: Nanocompilers, nanocomputers, high
performance computing, reconfigurable computing.

1 Introduction
Despite recent significant advancements in feature size

to 45nm [13], there is growing consensus that the familiar
density-doubling prediction of Moore’s Law as it concerns
2D fabrication techniques is reaching limits [10,11].
Evidence is abundant of a shift away from developing
techniques that fit increasing numbers of transistors onto a
chip, as manufacturers pursue technology that enables
increasing numbers of processing cores on a single chip
[12,14]. The movement toward increased coarse-grained
parallelism, the nearing of inherent limits of
photolithographic techniques, and the continued maturation
of the field of nanotechnology, could hint at a serendipitous
convergence of needs and capabilities.

The way forward in chip design and fabrication may
well include applied computational nanotechnology as
originally foreseen by Eric Drexler [6], and furthered by
many others [2,7,19,23]. Current chip design techniques,
and in fact virtually all software and hardware design of
any significance, make use of a variety of automated
compiler tools to generate complex designs, layouts or
executable code from an original human-readable
specification or source program [11]. Molecular

manufacturing, and other applications of nanotechnology,
are likely to require a similar approach in order to manage
the scope and complexity of translating a high-level
processor specification into nanoscale components.

Modern compilers for high performance computer
architectures apply a sequence of sophisticated analyses
and optimizations to translate a source language program
into efficient binary machine code. Machine specific
optimizations, customized to the particular target
architecture, are required to achieve significant speedup on
modern, high-performance architectures [1,11]. In spite of
the excitement over recent advances in feature-size
reduction [12,13], heat dissipation and barriers of physics
remain as problems [2,10].

Nanotechnology, manufacturing performed through
manipulation of atoms and molecules, or through other
nanoscale manufacturing techniques, is capable of
overcoming these barriers [6]. The continuing trend toward
flexible computer architectures with higher degrees of
parallelism suggests that the field of reconfigurable
computing, perhaps enabled through the use of
nanotechnology, is the next evolutionary step in processor
design [2,5].

Nanocomputing is taken to mean the class of highly
reconfigurable, nanotechnology-based, computer
architectures, and a nanocompiler is the software-hardware
system that targets such a nanocomputer. In this paper, we
present the design of a nanocompiler framework that targets
one form of nanoscale computer architecture, nano-
mechanical computing devices.

This form of a compiler framework translates a source
code program into both an optimized executable program
and a customized nanocomputer on which the executable
program will be ideally suited to run. Much as traditional
compilers customize the program to suit the machine [1],
this proposed compiler customizes the machine to fit the
program. Since no such nanocomputer architecture yet
exists, our study demonstrates the approach using a
molecular design language, a simulated hydrocarbon
assembler, and a mathematical modeling tool to
demonstrate and estimate the performance of this approach.

2 Background
Nanocomputer architectures, which form a subset of

reconfigurable architectures that include FPGA, FCCM,
cellular array, synthetic neural systems and many others
[5,7], are produced using some form of a molecular
manufacturing and provide a natural successor to current
general-purpose microprocessor architectures [7].
Nanocomputers, of course, must be functionally at least as
capable as their predecessors, fast, inexpensive, robust and
capable of operating at room temperature and of executing
legacy code [2]. In order to produce such nanoscale
architectures, molecular manufacturing and
mechanosynthesis techniques must be understood,
including the use of hydrocarbon assemblers. As this
technology is in its infancy, the use of a variety of research
tools to model and simulate the proposed architecture is
required.

2.1 Nanoscale computer architectures
Among the proposed nanoscale computer architectures

are silicon-based resonant-tunneling devices (RTDs),
consisting of tunneling diodes paired with field-effect
transistors (FETs) [2], carbon nanotube semiconductors [4],
diamondoid carbon transistors synthesized using Chemical
Vapor Deposition (CVD) techniques [18], and novel nano-
mechanical computing devices consisting of moving,
nanoscale components [6], reminiscent of Charles
Babbage’s Analytical Engine [11], albeit nine or ten orders
of magnitude smaller. Although all of these potential
technologies hold promise, all but nano-mechanical devices
are constrained to two dimensions, limiting their potential
for improvement over time in the same way that current
photolithographic techniques are limited.

Nano-mechanical devices such as logic gates and
registers will be constructed from a series of molecular
logic rods called interlocks and driven by kinetic forces [6].
Although this atomic-scale computational machinery will
operate more slowly than traditional electronic devices, the
difference will be only approximately one order of
magnitude due to its much smaller size. Nano-mechanical
devices can have much higher densities since interlock
logic gates can be stacked in three dimensions, while
transistors must be placed on a 2-dimensional substrate.

The density of nano-mechanical devices is estimated to
be 1011 greater than that of silicon transistor devices,
enabling the very real potential to produce massively
parallel networks of nanoscale processors [6]. Other
benefits to nano-mechanical computing architectures
include precision, tolerance to physical wear, improved
fault tolerance, and broad understanding of mechanics and
motion in general [17].

The interlocks used for logic gates as described in
Drexler’s architecture consist of sliding rods that have knob
protrusions which slide between one another. Depending
on their position, one rod may block another or allow a rod

to continue sliding along its vector of movement, with input
and output provided by additional interlock rods, all
enclosed in a stiff housing. Rods can be combined easily to
form a logic gate that computes the output of a NAND
operation, a logical component from which all other logical
operations can be constructed. Estimates for clock speeds
of nano-mechanical logic gates are 1000 MIPS, or
approximately 1 GHz. The ability to fabricate in three
dimensions means that massively parallel processors could
be formed in very dense volumes. A complete nano-
mechanical CPU system of 106 logic gate “transistors”
forming a cube 400 nm on a side, with each logic gate
being smaller than a single rhinovirus, would fit in the same
surface area as 80 transistors at the 45 nm scale. [6]

2.2 Mechanosynthesis and assemblers
 Building molecular mechanical computers with

atomic precision will require direct control of the chemical
reactions that occur between atoms and molecules. The
process of manufacturing machinery through such methods
is known as Molecular Manufacturing [18]. So far,
chemistry has relied on methods of controlled, probabilistic
reactions resulting from collisions between masses of atoms
in order to synthesize useful compositions, but without
guarantee of atomic precision. Mechanosynthesis is
performed using atomically precise tools that rely on
chemical bonding to produce positionally controlled
mechanical forces [9], which would be used to synthesize
useful molecules from their constituent atoms, as well as
higher-order structures [18].

Ideally, mechanosynthesis would be performed using a
Universal Constructor, a nano-mechanical computer
controlled machine that could follow sequences of
instructions to assemble raw atomic material into arbitrary
molecular structures, including exact copies of itself [17].
Drexler's proposal for a general-purpose molecular
assembler is an example of such a constructor [6,17], an
approach that is reminiscent of Alan Turing’s notion of a
Universal Machine which eventually led to the modern,
stored-program computer [11].

Research has focused on the hydrocarbon assembler,
which is simplified universal constructor that builds
diamondoid structures [6], including copies of itself. The
small molecular computers in each assembler are controlled
by a broadcast mechanism emanating from a macroscale
computer. In this “broadcast architecture,” instructions
from the macroscale controller are passed through acoustic
waves that vibrate through a liquid environment
surrounding the assemblers. The instructions are received
by mechanical pressure-actuated devices in the assemblers.
These pressure activated devices initiate instructions to the
mechanical logic units in the assembler computer. As a
result, the assembler can be reprogrammed to make
different molecular structures [19].

2.3 Modeling and simulation of structures
Molecular machinery can require billions of atoms in

the final design. Thus, there is a need for a set of
“molecular compilers,” which take a high level of
abstraction input for molecular components and transform
them into atomically positioned devices [5]. To enable
high-level specification of nano-mechanical structures, an
abstract scripting language, MolML, was developed that
can be compiled into hydrocarbon assembler instructions
[24]. MolML is an Extensible Markup Language (XML)
based language that is designed to factor out the
redundancy in molecular structures that have large amounts
of symmetry and repetition. The language is written to
provide communication between a macroscale computer
and a molecular assembler, facilitating the correspondence
of input instructions to the assembler. Using MolML, it is
possible to define 3-dimensional molecular structures of
arbitrary complexity [24].

In order to visualize and simulate the molecular
structures defined with MolML, a software tool was
developed to parse, display and animate a MolML design.
The MolSim tool [24] implements basic Newtonian Laws
by using vector geometries, accounting for the position,
velocity, and acceleration of particles in the simulation
environment. The simulation engine was tested against a
MolML document that defined the structure of Drexler’s
nano-mechanical NAND gates, using the tetrahedral lattice
molecular structure of rigid diamond molecules to form the
logic rods. For efficiency concerns, the housing was
omitted. The molecular design was inspired from an
examination of the repetitive symmetries inherent in the
lattice [7].

Simulation of atomic interactions and molecular
structures in the current version of MolSim is infeasible for
larger structures, so these larger structures such as adders
can be constructed as formal, mathematical models using
Colored Petri Nets (CPNs) [15]. Petri Nets provide a
modeling language that is well suited for larger systems,
drawing on the power of generalization provided by
mathematical modeling techniques. In practice, a CPN
model is created using a graphical tool [20], enabling visual
representation and analysis of a CPN model. With the
addition of timing parameters, CPN can realistically model
the function of a nano-mechanical NAND gate and higher-
order molecular structures constructed hierarchically by
reusing the NAND model in varying configurations.

3 Nanocompiler Design
The two major goals of the work reported in this paper

are refinement of the design of a nanocompiler [25] and a
simulation of a common nano-mechanical component that
can be generated by the nanocompiler. Our nanocompiler
design generates as its output both as an executable version
of the original source program and the description of a
machine on which the executable will run. Traditional

compilers take the source code and translate it into a binary
form suitable for a specific processor, optimized to run as
well as possible on that target machine. Knowledge of the
target machine is needed to perform machine-dependent
optimizations. Our approach is a generalization of
compilation for reconfigurable computing in that the
configuration of the target machine is unknown when
compilation begins. The machine configuration is extracted
from the source program, based on analyses of program
characteristics. In this way, the resulting machine is an
excellent fit to the program.

Figure 1 illustrates the organization of the proposed
nanocompiler from a high level. Source code is processed
by the Front end of the compiler, including machine-
independent optimizations. The resulting intermediate form
is passed to a Machine requirements analysis phase, which
performs static analysis, providing metrics to the Machine
description generation phase. The resulting machine
description is used by the Processor generator phase to
generate or reconfigure the target machine, and by the
compiler Back end to perform machine-dependent
optimizations and generate the executable code. The
Processor generator and even runtime profiling information
can feed information back into the Machine requirements
analysis phase to enable iterative refinement of the machine
description, and thus of the processor itself.

S o u r c e c o d e

F ro n t e n d

M a c h in e r e q u i r e m e n ts
a n a l y s i s

M a c h in e d e s c r ip t io n
g e n e r a t io n

B a c k e n d

p r o c e s s o r

E x e c u t a b l e c o d e

Processor generator

D y n a m ic p r o f i l e r

S o u r c e c o d e

F ro n t e n d

M a c h in e r e q u i r e m e n ts
a n a l y s i s

M a c h in e d e s c r ip t io n
g e n e r a t io n

B a c k e n d

p r o c e s s o r

E x e c u t a b l e c o d e

Processor generator

D y n a m ic p r o f i l e r

Figure 1. Organization of nanocompiler

Inside the Processor generator (Figure 2), a machine is
reconfigured or generated using a nanotechnology
approach. The machine description is analyzed through a
sequence of phases that translate the description into a
layout of circuits (e.g., VHDL) or other structures (e.g.,
MolML) that implement the machine. The resulting
abstract layout, in turn, is implemented using logic gates,
which are either reconfigured as with FPGAs or assembled
using molecular manufacturing techniques, to produce the
target processor. In the current implementation, we focus
on generation of a nano-mechanical machine description
for the addition instruction.

M achine description

C ircuit generator

C ircuit layout optim izer

Logic gate generator

M olecular gate assem bler

Processor

M achine description

C ircuit generator

C ircuit layout optim izer

Logic gate generator

M olecular gate assem bler

Processor

Figure 2. Organization of a nanotechnology-
based processor generator

Thus, we restrict the scope of the research results
reported in this paper to the machine description and
processor generation phases, and more specifically on how
a machine description for low-level components, nano-
mechanical NAND gates, can be combined into a higher-
level component, a 32-bit nano-mechanical adder.

4 Simulation of 32-bit Adder
Simulation of a 32-bit nano-mechanical adder was

accomplished through a sequence of four developmental
stages: nano-mechanical NAND gate, CPN model of a
NAND gate, CPN model of a 1-bit adder, and a CPN model
of a 32-bit adder. In the first stage of development, an
atomic-level nano-mechanical description language
(MolML) and a simulation tool (MolSim) were designed,
enabling a realistic, visual modeling of a single NAND gate
(Figure 3).

Figure 3. MolSim model of NAND gate

By extending earlier work on MolSim [24], we created
an atomic and molecular description of a NAND gate that
could be generated given a few positional parameters,
which is then translated by MolSim into the full atomic and
molecular description that details placement and
configuration of each atom and molecule.

Based on proposed functional parameters [6], a variety
of characteristics are provided in Table 1. Although a
NAND gate can be constructed using just 244 Carbon
atoms, the housing which encloses the gate is required,
needing a very roughly estimated 16,140 atoms (x=32,
y=32, z=16, less 244). The proposed speed for a nano-
mechanical processor is approximately 1 ns per operation,
operating at 1000 MIPS, or 1 GHz, with logic and
arithmetic operations requiring about 1 ns [6]. We assume
0.1 ns per NAND calculation, with 0.2 ns for reset latency.
A single NAND gate fits in about 16 nm3, so 6.25e+16
such components can fit in a single cubic millimeter.
Clearly this is a much higher density that the current best
feature size of 45 nm.

Table 1. Estimated characteristics of
nano-mechanical NAND gate model

Time to perform operation
 (Transistors require 0.01 ns) 0.1 ns

Time to reset (2x op time) 0.2 ns

Surface area of gate
 (Transistors each require 106
nm2)

4 nm2

Volume of gate
 (gates are stackable in 3D) 16 nm3

Improvement in volumetric packing
density compared to transistors >1011

In the second stage, CPN was used to model the same
NAND gate at a higher level of abstraction (Figure 4), but
with identical behavior characteristics. Time units are
measured by the addition of a timestamp notation to the
NAND gate, such that the function of each NAND gate
accounts for one unit of time. Time units accumulate
during the simulation, enabling straightforward scaling to
other time units as needed. Because of the nature of the
binary calculations being performed, the NAND gate was
designed to operate on Boolean, rather than decimal,
values.

In the third stage, a CPN model was constructed of a 1-
bit adder by connecting nine NAND gate models in a
standard adder configuration (Figure 5). Time
measurement of the NAND gate model produced output of
a carry value in 5 units of time, and a sum value in 6 time
units, which translates to a total time of 0.6 ns to perform a
1-bit addition.

nand(i1,i2)

i2

i1

NAND

@+1

out
Out BOOL

in2
In BOOL

in1
In BOOLIn In

Out

Figure 4. CPN model of NAND gate

CARRY

SUM

i1

i1

i1

i2

i1

i2

i1

i1i1

i2
i2

i2

i1

i1

i1

i2

i1

i1

i1

i2
i1

i1

i2

i1

i2

i1
i1

i2

i2i2

i1

i2
i1

i1

i1

i2

i2

i2

i1

i1

i2

i1

i2

i1

i2

i1

i2

i1i1
i2

i1

i2

i2

i1
i1

NAND

NAND Gate

NAND

NAND Gate

NAND

NAND Gate

NAND

NAND Gate

NAND

NAND Gate

NAND

NAND Gate

NAND

NAND Gate

NAND

NAND Gate

NAND

NAND Gate

@+100

out
Out BOOL

in1
BOOL

in2

BOOL

out
Out BOOL

in1
BOOL

in2

BOOL

out

BOOLin1
BOOL

in2
BOOL

out

BOOLin1
BOOL

in2

BOOL

out

BOOL
in1

BOOL

in2

BOOL

out

BOOL

out

BOOL

out

BOOL

in1

BOOL

in2

BOOL

in1

BOOL

in2

BOOL

in1

BOOL

in2

BOOL

carry
In BOOL

out

BOOL

in2

BOOL

in1

BOOL

bit1
In BOOL

bit2
In BOOLIn

In

In

Out

Out

NAND Gate

NAND Gate

NAND Gate

NAND Gate

NAND Gate

NAND Gate

NAND Gate

NAND Gate

NAND Gate

Figure 5. CPN model of 1-bit Adder

In the fourth and final stage, a CPN model of a 32-bit
adder was constructed using the hierarchical features of
CPN Tool, combining four 1-bit adders into a 4-bit adder,
then four 4-bit adders in a 16-bit adder, and finally two 16-
bit adders into a 32-bit adder (Figure 6). Timing for
addition of two 32 bit values was a total of 68 time units,
which is generalized to the equation: 2(n-1)+6, where n is
the number of bits. Although the carry value requires 5
units to calculate in each individual adder, because
calculation of the sum does not require the previous carry
for the first 3 time units, significant overlapping (i.e.,
parallel) computation occurs.

Table 2 summarizes selected characteristics, providing
initial estimates. Based on our models, and other proposed
characteristics [6], a 32-bit nano-mechanical adder requires
288 NAND gates connected using roughly 96 connector
rods, possibly constructed of nanotubes. The models
predict 6.8 ns per addition, with latency between the start of
subsequent additions of 7.0 ns, including the 0.2 ns reset
time.

Drexler’s proposed CPU requires approximately 1 ns
per operation [6], suggesting that some amount of
parallelism may be inherent in a nano-mechanical adder
that is not captured in the current model. At this estimated
size, 2e+14 such adders would fit in a volume of one cubic
millimeter. Extrapolating these values, the 32-bit adder
model is within specification of a proposed nano-
mechanical CPU that would be contained in a cube 400 nm
on a side [6].

Designing nano-mechanical computer components at
this scale raises a number of important issues that may need
to be addressed in future research, all of which can lead to
further such lists, including:

• Compilation time – Determine time needed to analyze
source code, produce a machine specification, and
fabricate components using hydrocarbon assemblers,
which can enable near-exponential assembly capability
through an initial self-replication process.

bin2dec(l4)l4

dec2bin_32(num)dec2bin_32(num)

num
num

l1^^l0

l1

l0

l0
l0 l1l1

l4
l4

i1

l1

i2

l1

l2 l2

l0

l1

i3i2

Bin2Dec

Dec2Bin0
Dec2Bin1

OutFormat

InFormat0

input (l4);
output (l1,l0);
action
let
 val a = List.take(l4,16)
 val b = List.drop(l4,16)
in
 (a,b)
endInFormat1

input (l4);
output (l1,l0);
action
let
 val a = List.take(l4,16)
 val b = List.drop(l4,16)
in
 (a,b)
end

16 Bit Adder #0

16BitAdder

16 Bit Adder #1

16BitAdder

dec_sum

TINT

dec_y

8932451

TINT

dec_x

1234567

TINT

sum

BLIST

y

BLIST
x

BLIST

carry out

BOOL

s1

BLIST

y1

BLIST

x1

BLIST

carry0

BOOL

s0

BLIST

carry in

true

BOOL

y0

BLIST
x0

BLIST

16BitAdder 16BitAdder

Figure 6. CPN model of 32-bit Adder

Table 2. Estimated characteristics of 32-bit
nano-mechanical adder model

Total NAND gates @ 16 nm3 288
Total connectors @ 1 nm3 96
Estimated volume
 (approx 16 nm cube)

4,704 nm3

Estimated time for 1-bit
addition

0.6 ns

Time to perform 32-bit
addition based on simulation

6.8 ns

Predicted time of 32-bit
addition [6]

1 ns

Estimated throughput 142 MIPS
Predicted throughput [6] 1000 MIPS

• Design feasibility – Determine whether Drexler’s and
Merkle’s analysis of feasibility is correct, and identify
what technology must be developed to construct a
complete, working nanocompiler. Extend 2-D
fabrication to an understanding of 3-D fabrication made
possible with mechanical components.

• Performance efficiency – Determine the efficiency of
inherently slower nano-mechanical processing, and
evaluate for potential benefit to speedup through higher
degrees of parallelism, and predict throughput and
related latencies. Design models that accurately reflect
predicted behavior.

• Requirements analysis – Determine what essential
information is needed in the compiler, including
analyses performed for parallelization, resource
requirements, and efficiently scalable reconfiguration
and fabrication.

• Usability of massive parallelism – Identify approaches
that can successfully utilize the extreme parallelism that
may be available, including integration of ILP, thread-
level and task-level parallelism.

5 Related Work

Research strongly suggests that reconfigurable
architectures, including nanocomputing, are likely to
provide a better fit and allow continued performance
improvements for general purpose computation. [2,3,5,7].
Design space exploration as applied to compilation for
FPGA-based and other reconfigurable architectures
demonstrates the performance improvements possible with
customized architectures [16,21,22]. The concept of
“program in, chip out” (PICO) relies on compiler analysis,
particularly targeted automatic parallelism, to identify
program fragments that will benefit most from customized
hardware [16]. While PICO targets primarily embedded
processors and uses design space exploration, our approach
envisions a desktop or embedded computer that
reconfigures its own hardware to any arbitrary
configuration, using machine requirements analysis and
nanotechnology. This process may resemble FPGA
reconfigurability, or physical molecular reassembly,
performed at compile-time or run-time.

An innovative approach to large-scale, homogeneous,
undifferentiated, reconfigurable architecture improves upon
FPGAs using a less expensive nanoscale cell matrix
approach [7]. This work describes how networks of
atomic-scale switches can be configured in parallel and
used to fabricate scalable processors that are customized to
specific tasks. Our research can be targeted to a
nanocomputer cell matrix architecture, focusing on use of
the compiler to automatically generate reconfiguration
instructions.

The field of nanotechnology is quite active and rapidly
advancing, with frequent accomplishments being made in
many disciplines including medicine, pharmaceuticals,
chemistry, physics, and of course, computer engineering
[8], although most are chemistry-based, rather than nano-
mechanical. Our research attempts to pursue basic and
applied nancompiler research, focusing on applied
molecular manufacturing techniques. Continued research in
this area in the near future will require more powerful
modeling and simulation tools. Although CPN provides a
flexible framework for modeling, true molecular models
that more accurately depict the underlying physics and
enable large-scale simulation are needed. A variety of tools
are available for molecular modeling and simulation
(nanohub.org), with a promising recent tool being
Nanorex’s NanoEngineer (nanorex.com).

6 Summary and Future Work
Reconfigurable computing is a rapidly advancing area,

and the promise of nanotechnology is being recognized. In
this paper, we have proposed the design of a nanocompiler
framework, and demonstrated how molecular computing
components can be generated from a higher-level
representation, such as source code. Although this research
was limited to simulation of a nano-mechanical 32-bit
adder, the same approach can be used to generate the full
range of components needed to construct an arbitrarily
complex nano-mechanical multi-processor. With the
significant flexibility and capability of nanocomputers, it
seems that the responsibility for guiding the configuration
will fall to the compiler, and this research demonstrates the
feasibility of that approach. Where once the compiler
customized the program to suit the machine, the compiler
will soon fully customize the machine to suit the program,
extending code generation to include code that will
reconfigure, or even guide the design and fabrication of the
processor itself.

We are planning extensive research and
experimentation in the area of nanocompiler design and
molecular nano-mechanical machine generation, including
program characterization analysis and automatic
parallelization, with a long-term goal of compiler control of
physical, molecular assembly hardware such as STMs and
their descendants. Models for other components, including
logic units, multipliers, and memory, are being developed
using Colored Petri Nets, with plans also to use
NanoEngineer.

7 References
[1] A. Aho, M. Lam, R. Sethi and J. D. Ullman.
“Compilers: Principles, Techniques, and Tools, 2/E”.
Addison-Wesley, 2007.

[2] P. Beckett and A. Jennings. “Towards nanocomputer
architecture”. Conferences in Research and Practice in
Information Technology, Vol. 6, 2002.

[3] J. E. Carrillo and P. Chow. “The effect of
reconfigurable units in superscalar processors”. FPGA
2001, Feb. 11-13, 2001.

[4] M. L. Cohen. “Nanotubes, Nanoscience, and
Nanotechnology”. Materials Science and Engineering: C.
Volume 15, Issues 1-2 , pages 1-11, Aug. 20, 2001.

[5] C. Compton and S. Hauck. “An introduction to
reconfigurable computing”. IEEE Computer, April 2000.

[6] K. E. Drexler. “Nanosystems: Molecular machinery,
manufacturing and computation”. Wiley & Sons, Inc.,
1992.

[7] L. J. K. Durbeck and N. J. Macias. “The Cell Matrix:
an architecture for nanocomputing”. Nanotechnology,
12:217-230, 2001.

[8] Foresight Nanotech Institute. Web site at
http://www.foresight.org, accessed Feb. 2007.

[9] R. A. Freitas. “Pathway to Diamond Molecular
Manufacturing”. Lecture, First Foresight Conference on
Advanced Nanotechnology, Oct. 22, 2004.

[10] W. Gibbs. “A Split at the Core”. Scientific American,
pages 96-101, Nov. 2004.

[11] J. L. Hennessy and D. A. Patterson. “Computer
architecture: a quantitative approach”. Fourth edition,
Morgan Kaufmann Publishers, San Francisco, 2006.

[12] T. Yager. AMD reinvents the x86. 12, Feb. 7, 2007.

[13] Intel Press Release. “Intel's Transistor Technology
Breakthrough Represents Biggest Change to Computer
Chips In 40 Years”. http://www.intel.com/pressroom, Jan.
27, 2007.

[14] J. Held, J. Bautista and S. Koehl. “From a Few Cores
to Many: A Tera-scale Computing Research Overview”.
Intel white paper, http://www.intel.com/research, 2006.

[15] K. Jensen. “Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use”. Volume 1, Basic
Concepts. Monographs in Theoretical Computer Science,
Springer-Verlag, 1997.

[16] V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C.
Cronquist and M. Sivaraman. “PICO: Automatically
designing custom computers”. IEEE Computer, 39-47,
Sept. 2002.

[17] Merkle, R.C. “Computational Nanotechnology”.
Nanotechnology 2, pages 134-141, 1991.

[18] Merkle, R.C. “Molecular Manufacturing: Adding
Positional Control to Chemical Synthesis”. Chemical
Design Automation News, Vol. 8 (9 & 10), Sept./Oct.
1993.

[19] R. C. Merkle. “Design considerations for an
assembler”. Nanotechnology, 7(3), pages 210-215, 1996.

[20] A. V. Ratzer, et al. “CPN Tools for Editing,
Simulating, and Analysing Coloured Petri Nets”. In W.v.d.
Aalst and E. Best (eds.): Application and Theory of Petri
Nets 2003. Lecture Notes in Computer Science, vol. 2679,
Springer-Verlag, pages 450-462, 2003.

[21] K. Sekar, K. Lahiri and S. Dey. “Dynamic platform
management for configurable platform-based system-on-
chips”. Proceedings of the International Conference on
Computer Aided Design (ICCAD 2003), 641-648, Nov.,
2003.

[22] B. So, M. Hall and P. Diaz. “A Compiler approach to
fast hardware design space exploration in FPGA-based
systems”. ACM PLDI 2002, Berlin, Germany, June, 2002.

[23] G. L. Timp, R. E. Howard and P. M. Mankiewich.
“Nano-electronics for advanced computation and
communication”. Nanotechnology. G. L. Timp (ed).
Springer-Verlag, New York, 1999.

[24] B. W. Wagner and T. P. Way. “MolML: An Abstract
Scripting Language for Assembly of Mechanical
Nanocomputer Architectures”. 2006 International
Conference on Computing in Nanotechnology (CNAN'06),
pages 258-264, Las Vegas, June 2006.

[25] T. P. Way. “Compilation for Future Nanocomputer
Architectures”. 2006 International Conference on
Computing in Nanotechnology (CNAN'06), pages 251-257,
Las Vegas, June 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

