
SNITCH: A Software Tool for Detecting
Cut and Paste Plagiarism
Sebastian Niezgoda and Thomas P. Way

Applied Computing Technology Laboratory
Department of Computing Sciences

Villanova University
Villanova, PA 19085

sebastian.niezgoda@villanova.edu
thomas.way@villanova.edu

ABSTRACT
Plagiarism of material from the Internet is a widespread and
growing problem. Computer science students, and those in other
science and engineering courses, can sometimes get away with a
“cut and paste” approach to assembling a paper in part because
the expected style of technical writing is less expositional than in
liberal arts courses. Detection of cut and paste plagiarism is time-
consuming when done by hand, and can be greatly aided by
automated software tools. This paper reports on the design of a
software tool called SNITCH that implements a fast and accurate
plagiarism detection algorithm using the Google Web API. Issues
related to plagiarism detection software are discussed and
empirical results of a performance and accuracy study are
presented.

Categories and Subject Descriptors
K.4.1 [Computing Milieux]: COMPUTERS AND EDUCATION
– Public Policy Issues. H.3.3 [Information Systems]:
INFORMATION STORAGE AND RETRIEVAL – Information
Search and Retrieval.

General Terms
Algorithms, Design, Management.

Keywords
Plagiarism detection, ethics, cut and paste plagiarism, automated
grading tools, cheating

1. INTRODUCTION
Internet plagiarism is a significant problem, with a recent study
finding that 40% of students admit to having used a “cut and
paste” approach in at least one writing assignment, while 77% do
not feel that such cheating is serious [7]. Plagiarism is certainly
nothing new, and many strategies have been developed to deal
with the problem. Educational institutions at all levels employ a

comprehensive approach to dealing with plagiarism which
involves setting a policy against it, judiciously enforcing the
policy, actively encouraging students to avoid cheating, designing
plagiarism-proof assignments, and using whatever tools and
techniques are available to detect instances of cheating. This
approach can be effective, and with a recent resurgence in the
successful use of honor codes [7] and the use of plagiarism
detection software [5], many forms of cheating can be reduced.

The problem of plagiarism in student papers and reports written
for computer science, and other science and engineering courses,
is fundamentally different than in expositional and narrative
writing more common in non-technical courses. The style of a
technical paper can be more disjoint, reflecting more of an
assembly of assertions rather than a holistic theme, and still be
appropriate to the subject matter, if not ideal. Such a terse style
lends itself to cut and paste plagiarism while an expositional style
requires much more effort to use such an approach. Thus, the
more flowing a paper is, the more likely any plagiarism used
would be of a larger scale, such as purchasing a paper outright
from an online database or term-paper mill [6,9].

Manual approaches to detecting plagiarism are labor intensive,
involving multiple readings of each suspect document while
relying on the expertise of the reader to recognize instances of
plagiarism. This can involve detecting stylistic differences
between the author’s expected voice and the voice expressed in
the paper, use of unfamiliar or unexpected terminology, and
recognizing verbatim text from an outside source [6]. The use of
software is ideally suited to automating the detection of verbatim
plagiarism, but is not capable of higher-levels of detection.
However, with the availability of material from the Internet, and
the prevalence of cut and paste plagiarism, software can serve as a
valuable tool for catching, or deterring, the cheater. [5]

This paper describes the design of an algorithm for automated
plagiarism detection and an associated software tool called
SNITCH (Spotting and Neutralizing Internet Theft by CHeaters)
that implements the algorithm. The SNITCH program uses a
sliding window to scan a document and locate candidate passages
that might be plagiarized. Each passage is searched for on the
Internet, and an annotated HTML report is output containing the
original document with hypertext links inserted for any passages
that were found in an Internet search. A brief summary, including
statistics about the amount of plagiarism, if any, and the time
taken to perform the search, is also provided in the report.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003...$5.00.

2. PLAGIARISM DETECTION
Detecting plagiarism can be a tedious, time-consuming and
repetitive task, all characteristics that make the problem ideally
suited to a software solution. In this section, a brief discussion of
the common, non-software-based approach to plagiarism
detection is provided, followed by an overview of existing
software solutions and issues to be considered in the design of
such software solutions.

2.1 The Manual Approach
In a time with a seemingly limitless electronic cache of material
from which to “borrow” from the Internet, an approach commonly
used by educators to combat the cut and paste approach to
plagiarism is to highlight suspicious excerpts in a paper, and then
enter them into an online search engine. If identical excerpts are
found in an online source, it is likely that the excerpt was
plagiarized. Certainly, if multiple such instances of identical
excerpts are discovered in a single paper, a strong case can be
made that intentional plagiarism is present.

The downside of this manual approach is that it is labor intensive,
requiring detailed, on-screen reading and re-reading of each
paper, coupled with the repeated use a search engine including
copying and pasting selected passages from each paper using a
mouse and keyboard. Although this tedious approach is perhaps
less exhausting than leafing through textbooks looking for
potential matches, or being intimately familiar with enough such
textbooks and other sources to recognize stolen phrases at a
glance, it is nevertheless daunting, particularly when faced with a
large stack of student papers to evaluate under deadline pressure.

2.2 Existing Software
Software has been developed that reduces a lot of the labor-
intensive aspects of cut and paste plagiarism detection. There are
a number of commercially available software tools and services
that perform automated checking of student papers. Often the
cost is relatively high, or the turn-around time is sufficiently long,
or both, reducing the availability to those educators with budget
constraints. These available automated approaches often assume
that large sections of a paper, or even entire papers, would be
copied verbatim. Yet, for technical oriented research papers, such
as in computer science and engineering disciplines, a cut and
paste approach where paragraphs, sentences or even phrases can
be gathered into a report is easier to get away with. Where there
is less narrative, this more fragmented approach is easier to pass
off as finished writing and also harder to recognize as plagiarism.

Software tools have been successfully used for detection of
plagiarism in student programming assignments for many years
[4,5,10]. Two program files are compared after some compiler-
like preprocessing to try to find similarities in the files that could
indicate plagiarism. This form of software continues to prove an
invaluable tool both for the detection of cheating and for grading
assistance in large section courses [10].

In the author’s experience, the Eve2 software performs adequately
for shorter papers, but its report generation feature can be
inaccurate. Although Eve2 is really designed to determine how
closely a student paper matches a single online source, for simply
detecting the simple presence of plagiarism it is acceptable. It
costs $29.95 for an unlimited use license, and takes from 2 to 45

minutes to scan a typical 5-7 page paper, depending on the
thoroughness of the desired scan. [2]

TurnItIn is a well-respected service, where student papers are
submitted via the Internet for analysis. Reports are generated and
returned to the instructor, normally within four to six hours of
submission. The service can be expensive, with yearly
institutional subscriptions available ($3,000/year) or a license fee
and per-student charge ($530/year plus $1/student) among the
options. [12]

The MyDropBox service is a recent and able competitor to
TurnItIn, with a similar pricing strategy and turn-around time.
Reports are generated within 24 hours of submission. A number
of pricing plans are available, such as an institutional plan that
costs approximately 60 cents per student. [8]

An extensive survey was conducted at Claremont-McKenna
College to measure the efficacy of all available plagiarism
detection software. For detecting cut and paste plagiarism, the
results overwhelmingly favored the use of TurnItIn, with Eve2
and manual Google searches combined with WCopyFind the only
other worthwhile alternatives (at the time of the study). [5]

2.3 Issues
There is some debate about whether the use of plagiarism-
detection software can injure the relationship between educator
and student. Although issues of mutual trust are important, when
software is used judiciously, it can encourage learning, reduce
cheating, increase fairness for all students, and redirect the burden
of proof of plagiarism from the instructor to the software. [6]
Aside from these philosophical and psychological issues, there are
a number of technical issues that should be considered and
addressed when crafting such a tool:

Identification – A human would look through the document for
vocabulary and phrasing that seemed out of place for the
particular author. To attempt to duplicate this behavior, the
software could use a simplified semantic analysis, looking for
sequences of word of some configurable maximum length. These
sequences can then be ranked based on metrics such as a count of
sufficiently long words, or average length of words in the
sequence, as indicators of more advanced writing. The
justification for this approach is intuitive; technical writing tends
to be dense and terminology-rich, leading to a higher than average
word length. It is more difficult for a non-expert in a domain (i.e.,
a student) to rapidly prepare a report of seeming significance
without resorting to cut and paste plagiarism to get the job done.

Thoroughness – Because identifying plagiarism is time-
consuming, an instructor with a large stack of papers to grade
may disqualify a paper as soon as any instance is detected. The
software approach can measure the degree of plagiarism, and
automatically provide written documentation of the cheating in
much less time. The software should be configurable to
determine how many candidate passages should be searched for,
and provide a way for disqualifying a paper when a certain
number of verified instances of plagiarism have been detected.
This limiting enables thorough analysis of papers to be performed
while providing an upper-bound on time, which are essential
considerations when faced with a lot of work to do in a short
period of time.

Flexibility – An instructor can recognize an “interleaved”
instance of plagiarism, where some copied material has been
slightly revised by replacing, adding or deleting one or more
words to avoid detection. Software can duplicate this approach,
although it is a difficult combinatorial problem to solve. Because
search engines allow for “wildcards” (e.g., the insertion of a ‘*’ to
represent any sequence of letters or words), a simple approach of
replacing any short or common words in a candidate passage with
a wildcard may be an effective technique to combat attempts to
defeat detection of cut and paste plagiarism. Using wildcards can
increase the possibility of false positive results, so their use means
extra time must be spent inspecting the results.

Arms Race – Any software tool that is available for use by
instructors could also be used by students, with the concern being
that students may try to defeat automated plagiarism detection by
using such a program while writing their papers. Recognizing
that plagiarism can never be completely eliminated, any
techniques that cause a potential cheater to read, revise and
analyze written material, is an improvement over the alternative.
Rather than the educator and student involved in a plagiarism
detection arms-race of sorts, such software may lead to improved
learning. As a side-effect of trying to out-engineer the plagiarism
software, perhaps the student cheater may wind up inadvertently
understanding the subject matter of the paper quite well.

The issues and approaches raised here, and the features and
techniques used in previous tools and manual methods, provide
the motivation for the design and implementation of the SNITCH
software.

3. DESIGN OF SNITCH
This section describes the design of the plagiarism analysis and
detection algorithm used in SNITCH, and provides
implementation details that support the algorithm, including
integration of the freely available Java-based Google Search
Application Program Interface (API).

3.1 Algorithm
The algorithm developed for SNITCH uses a sliding window
technique and average length per word metric to identify potential
instances of plagiarism. In general, the algorithm uses the
following steps:

• Open a document
• Analyze the document

o Read a window containing the first/next W words
o Measure the number of characters for each word
o Calculate the Weight of the window, the average

number of characters per word for the words in the
window

o Associate this Weight with this particular window for
use later

o Repeat for all such windows in the document, shifting
the window forward in the document by 1 word

• Search for plagiarized passages
o Order windows in decreasing order, and eliminate

overlapping windows
o Rank all windows in decreasing order by Weight

o Select the top N weighted windows, and search the
Internet for each, gathering the top search result (if any)
for each

• Generate a report – Create an HTML document containing
statistics of search time, number of searches performed,
percentage of document found to be plagiarized, and other
pertinent statistics. Include the original document with
embedded HTML tags linking plagiarized passages to their
sources on the Internet.

The algorithm is parameterized to allow variation of the size of
the sliding window (W) and number of searches performed (N), to
enable fine-tuning on a per-user basis. Decreasing W will lead to
more potential candidates, but may increase false positive results
because the fewer words there are in a search phrase, the more
likely they could occur by chance. Increasing W can improve the
confidence in individual search results, but if set too high, it may
reduce that likelihood that any matches will be found if the
window is larger that the plagiarized passage. Increasing or
decreasing N will increase or decrease the thoroughness, and
lengthen or shorten the time taken to analyze a paper, since the
time to perform each search is determined by load on the Internet,
and Google specifically, rather than the capabilities of the user’s
own computer.

3.2 User Interface
SNITCH is implemented in Java, using Swing components for the
user interface and the Google Search API for underlying search
functionality. Figure 1 shows the main SNITCH user interface.
The user creates a work list of documents to analyze, and is free
to add and remove files from the work list, and to specify which
of the listed documents are to be analyzed.

Figure 1. Main user interface of SNITCH software.

The currently version of SNITCH supports analysis of text
documents only, so documents in other formats (e.g., Microsoft
Word) must first be saved as text. A status bar provides visual
feedback of progress during document analysis. Results of
analysis can be viewed using the built-in HTML viewer or in any
web browser (Figure 2).

3.3 Detection Engine
The detection engine analyzes the contents of the provided files
looking for excerpts likely to have been plagiarized, as described
in the above algorithm. The determination of which of these
candidates will be searched for is based on the average word
length in a sequence of W (or more) words, with searches
performed for the top N candidates.

Figure 2. Example portion of SNITCH analysis report.

The Google Search API is the enabling technology for SNITCH.
Google provides its API for free, subject to a straightforward
license application procedure with Google Labs. There is
generally a 1,000 search per day limit, which can be raised upon
request to Google and reasonable justification. [3] As a practical
matter, the number of searches performed (N) for each document
analyzed by SNITCH is set low (N=20) by default to prevent
exceeded the per day limit during periods of high activity.

Integration into a Java application is accomplished by
downloading the Google API developer’s kit, acquiring and
installing a license key, and adjusting settings in the developer’s
programming environment of choice. Clear instructions are
provided on the Google Web API web site. [3]

4. EVALUATION
An initial evaluation of the SNITCH software was performed to
measure its effectiveness at detecting instances of plagiarism in
custom-designed plagiarism benchmarks and a sampling of
typical computer science student term papers. Results are
compared with results for the same papers using the only other
available practical and cost-effective software tool, Eve2. No
formal comparison was done with online subscription services
due to cost constraints.

4.1 Accuracy and Performance
Experiments using four synthetic benchmark term papers and a
sampling of 10 actual student term papers were performed. The
synthetic benchmarks consisted of carefully crafted documents
containing known amounts and instances of cut and paste
plagiarism representing hypothetical papers containing high,
moderate, minimal, and no plagiarism. Actual student papers
were manually analyzed using careful online detective work, and
were divided into similar groupings based on the prevalence of
plagiarism that was found. These student papers were all rough
drafts, and any plagiarism detected was later removed by the
students. Three experiments were performed to measure analysis
speed and accuracy of SNITCH on the synthetic and real

documents, and in comparison with the commercial plagiarism
detection program Eve2 [2].

Table 1 compares the results of analysis of the synthetic
benchmarks by SNITCH, using a window width (W) of 5 words
and a candidate limit (N) of 20 searches. These values were
selected because wider and narrower windows tended to lead to
excessive false positives or a greatly reduced rate of detection,
while trying to minimize analysis time. Known measurements are
presented for comparison with the results of analysis of these
benchmarks.

Percentage of plagiarism present or found in a document is based
on a simple ratio of the number of plagiarized words to the overall
word count for the document. Instances of plagiarism indicate the
number of individual passages in the document that were
plagiarized. Because these passages may exceed the window
width W, more than one match may be found for a given instance.
In these cases, only one match per instance was counted in
tabulating results.

Table 1. Results of SNITCH benchmark document analysis.

Manual stats Found by SNITCH
Benchmark Pct Instances Pct Instances
High 90 20 85 17
Moderate 50 12 83 10
Minimal 15 5 80 4
None 0 0 0 0

In all cases where cut and paste plagiarism was present, it was
detected at least 80% of the time. Not surprisingly, benchmarks
with more plagiarism present were more successfully analyzed
than those with less present, suggesting that it is easier to catch
the blatant cheater than the sly one. However, even minimal
amounts of plagiarism were successfully detected.

Manual analysis of each student paper took approximately 30
minutes for a 7-10 page paper, which was found to be a point of
diminishing returns for the manual identification of plagiarism in
this set of papers. Detection of plagiarism in student papers was
slightly less successful than in synthetic papers, but was still quite
good. The range and average values for percent and count of
instances of plagiarism known to exist in the papers and the
results of SNITCH analysis are provided in Table 2.

Table 2. Results of student document analysis in SNITCH.

Manual stats Found by SNITCH
Category Pct (avg) Instances (avg) Pct Instances
High 50-90 (75) 10-24 (19) 63 12
Moderate 20-49 (40) 4-13 (10) 50 5
Minimal 1-19 (15) 1-7 (5) 40 2
None 0 (0) 0 (0) 0 0

SNITCH was able to consistently detect 40-63% of the instances
of plagiarism present in the papers, with slightly better success
when more plagiarism was present. While detecting no false
positives, SNITCH was able to positively classify all papers that
contained plagiarism, and to provide a significant amount of
concrete evidence of the cheating.

The commercial program Eve2 was used as part of the screening
and grading process in a large number of student papers in a
recent semester. While Eve2 was a significant improvement over
manual analysis, Table 3 illustrates key differences as compared
with SNITCH. Using the minimal amount of plagiarism detection
for the same sample of 10 student papers, Eve2 detected less in
significantly longer periods of time. In the case of papers with a
high degree of plagiarism, SNITCH missed a small amount as
compared with Eve2 (63% compared to 65% detection rate),
although Eve2 required nearly 7 minutes of additional analysis.
When an exhaustive search was used in Eve2, it was not
uncommon for the analysis of a single paper to take 45-75
minutes without more than minimal improvement to the rate of
detection. It is important to note that Eve2 produced many false
positive results, incorrectly identifying passages as having been
plagiarized, while SNITCH never produced false positives.

Table 3. Comparison of Eve2 and SNITCH.
Avg. analysis time Avg.pct detection rate

 Program High Mod Min None High Mod Min None
 Eve2 7:30 7:00 6:45 6:45 65 27 12 1
 SNITCH 0:44 0:38 0:18 0:15 63 50 40 0

The format of the results report produced by SNITCH provides
basic statistics regarding detection, similar to those reported in
Eve2 (search time, detection rate, etc.), as well as an HTML-ized
version of the original document annotated with links to
plagiarized sources, if any. Frequently, the links in the Eve2
report, which was in RTF format, were incorrect or did not
correspond to the text to which the appeared to be linked. In
developing SNITCH, every effort was made to make the report
serve as a useful and accurate record of all plagiarism detected in
an analyzed document.

5. CONCLUSIONS & FUTURE WORK
The problem of plagiarism of Internet sources is not going away
anytime soon, and automated software tools are an effective
means of detection. The SNITCH program provides an efficient
and accurate alternative to commercial tools and services,
producing acceptable accuracy and faster analysis at no cost;
SNITCH will be made available for free download. Although
development of SNITCH is ongoing, the current version provides
a solid and usable tool to assist instructors in deterring and
detecting cut and paste plagiarism.

Although a benefit specifically to computer science education is
not yet proven, we believe that the availability of SNITCH will
increase the threat of detection and continue to discourage
students from resorting to cut and paste plagiarism. Because CS
students tend to be technologically savvy, an unintended
consequence of SNITCH may be its use as a tedious pre-
screening, rewriting and detection avoidance tool. However, an
unexpected benefit of this behavior is that the cheating student
will spend more time with the material being studied. Obviously,
our hope is that SNITCH is a deterrent rather than a catalyst.

Future planned extensions to SNITCH include support for
analysis of MS Word documents, an improved search candidate
identification algorithm, an adaptive approach to setting the
window size and search limit based on document content, and
analysis statistics that account for plagiarized passages that are

larger than the search window. An investigation of more
sophisticated semantic analysis algorithms for candidate
identification is planned, although we are believers in the vaunted
KISS principle. We hope to present a follow-up study in the near
future, incorporating the experiences of a broad base of users and
a more exhaustive set of test cases.

SNITCH is the result of collaborative student-faculty research at
the Applied Computing Technology (ACT) Laboratory at
Villanova University. The ACT Lab encourages diverse
applications of computing technology to solve challenging
problems, providing students with the opportunity to become
invested in a significant research and development effort that
builds on software engineering and capstone projects courses. [1]

6. ACKNOWLEDGMENTS
Thanks to Dr. Dan Joyce for his advice on approaches to manual
search candidate selection which inspired the initial SNITCH
algorithm, and to Dr. Way’s recent students for providing a
corpus of test cases.

7. REFERENCES
[1] The Applied Computing Technology Laboratory, Computing

Sciences Department, Villanova University. 2005. Website:
http://actlab.csc.villanova.edu.

[2] EVE Plagiarism Detection System. 2005. Website:
http://www.canexus.com/eve/.

[3] Google Web APIs. Website: http://www.google.com/apis/.
[4] S. Grier. A tool that detects plagiarism in Pascal programs.

Proceedings of the 12th SIGCSE Symposium on Computer
Science Education, 13:1, pp. 15-20, 1981.

[5] C. Humes, J. Stiffler and M. Malsed. Examining Anti-
Plagiarism Software: Choosing the Right Tool. Claremont-
McKenna College technical report. 2003. Website:
http://www.educause.edu/ir/library/pdf/EDU03168.pdf.

[6] Brian Martin. Plagiarism: policy against cheating or policy
for learning? Nexus: Newsletter of the Australian
Sociological Association, 16:2, pp. 1-12, 2004.

[7] D. McCabe. Levels of Cheating and Plagiarism Remain
High. Center for Academic Integrity, Duke University.
2005. Website: http://www.academicintegrity.org.

[8] MyDropBox Internet Plagiarism Detection Service.
Sciworth, Inc. 2005. Website: http://www.mydropbox.com.

[9] L. Renard. Cut and paste 101: Plagiarism and the Net.
Educational Leadership, 57:4, pp. 38-42, 2000.

[10] R. Saikkonen, L. Malmi and A. Korhonen. Fully Automatic
Assessment of Programming Exercises. Proceedings of
ITiCSE’01, pp. 133-136, 2001

[11] R. Satterwite and M. Gerein. Downloading detectives:
searching for on-line plagiarism. Colorado College, 2002.
Website: http://www.coloradocollege.edu/Library/Course/
downloading_detectives_paper.htm.

[12] TurnItIn Internet Plagiarism Detection Service, 2005.
Website: http://www.plagiarism.org/.

[13] WCopyFind software. The Plagiarism Resource Site,
University of Virginia, 2005. Website:
http://plagiarism.phys.virginia.edu/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

