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ABSTRACT 

Automatic parallelization in a compiler is 
becoming more important as computer 
technologies expand to include more distributed 
computing.  This paper focuses on a 
comparative study of past and present 
techniques for automatic parallelization.  It 
includes techniques such as scalar analysis, array 
analysis, and commutativity analysis. 

The need for automatic parallelization in 
compilers is growing as clusters and other forms 
of distributed computing are becoming more 
popular just as CPU technology is trending 
towards higher degrees and coarser granularities 
of parallelism.  In this paper, we review known 
parallelization techniques for thread level 
identification in programs, and argue that these 
same techniques may also apply to generalized 
coarse-grain task identification. 

INTRODUCTION 

Compiler technology is facing a change in 
today's shifting market.  As distributed 
computing increasingly permeates the field; the 
software industry will place a demand on their 
compiler technology to parallelize software 
automatically.  Automatically identifying 
opportunities for parallelization is a critical step 

in generating efficient code for a variety of 
multithreading applications and has been studied 
for many years [2,3,4,6,8,10,11].  Although 
hardware can provide some degree of fine-
grained parallelism [7,9], the burden falls to 
compiler researchers to develop techniques that 
will automatically parallelize applications from 
the source of a program.  It is important to start 
with a definition of exactly what is meant by 
distributed system.  We will use the definition 
that Bal et al. gave in their survey of parallel 
programming languages: 

“a distributed system consists of 
multiple autonomous processors that do 
not share primary memory, but 
cooperate by sending messages over a 
communications network”[1]. 

This paper focuses on a comparative study of 
past and present techniques for automatic 
parallelization.  It includes techniques such as 
scalar analysis, array analysis, commutativity 
analysis, as well as other related approaches.  
Our purpose is for readers to get a basic 
understanding of the techniques presented in this 
article and how they are used currently to create 
compilers that automatically generate 
parallelized applications. 

Past techniques provided solutions for 
imperative languages like FORTRAN and C; 
however, these might not be enough.  Past 
compiler research on automatic parallelization 
dealt with parallelizing sections of a source 
program with a specific system in mind.  Such 
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compilers would parallelize loops and other 
segments of code, and introduce synchronization 
and message passing code to maintain 
correctness. Such compilers used scalar and 
array analysis techniques that made it difficult to 
use language features like pointers in a section 
to be parallelized automatically, a restriction that 
has become less practical. 

Recently, a shift in paradigm began and 
researchers started to look into other techniques 
for automatically generating parallelized 
programs, such as commutativity analysis 
applied over a broader window of the source 
code.  This type of analysis worked quite well 
for subsets of newer languages like C++, which 
enables more flexibility in today's development 
environments. 

Whatever the language, there is a growing need 
for these compilers and reliable techniques must 
be developed and refined. However, the need for 
automatic parallelization in compilers is growing 
as clusters and other forms of distributed 
computing are becoming more popular just as 
CPU technology is trending towards higher 
degrees and coarser granularities of parallelism.  
Thus, there is a need for static compiler 
techniques that identify coarse-grain tasks from 
program source, breaking the source into 
independent segments, which can be executed in 
parallel across multiple processors. 

SCALAR AND ARRAY ANALYSIS 

Scalar analysis and array analysis are two 
techniques often used in conjunction; thus they 
are presented together in this paper.  
Traditionally, these forms of analysis are used in 
imperative languages like FORTRAN and C 
because of the nature of the analyses.  Scalar 
analysis breaks down a program to analyze 
scalar variable use and the dependencies that 
they have.  A dependency as defined by Hall et 
al. is “when a memory location written on one 
iteration of a loop is accessed (read or write) on 
a different iteration.”[6]  Scalar analysis will 
identify such cases that can be parallelized 
simply due to these dependence complications.  
The sections that are not identified as 
parallelizable are left to array analysis to 

parallelize them; otherwise, they will not be 
parallelized.  In addition, scalar analysis 
“determines [if] parallelization may be enabled 
by privatization or reduction transformations.” 
[6] 

Scalar analysis is also used to check 
dependencies on array elements by their indices.  
This type of analysis is called “scalar symbolic 
analysis” [6], and is preformed by transforming 
the indices into solvable affine equations that 
express the indices of the array.  This 
transformation brings the problem to a more 
solvable integer-programming problem, that 
there are a multitude of solutions available to 
solve the problem in a reasonable amount of 
time. 
 
for (i = 0; i < x.length; ++i) { 
  for (j = 0; j < i; ++j) { 
    x[i * x.length + j] = z[j]; 
  } 
} 

Figure 1. Loop by Array Analysis 

 Unfortunately, this analysis is applicable only to 
specific forms of program constructs.  For 
example, if an array is accessed in a linear form 
via an equation that acts as if the array were 
multidimensional, then this form of analysis 
cannot parallelize the code.  Figure 1 shows a 
loop that follows this pattern.  The loop accesses 
the array in a standard linear fashion; however, 
the access is performed by a function of two 
variables.  This type of situation is common in 
computer graphics as well as in scientific 
applications [6]. 

The counterpart to scalar analysis is array 
analysis.  One method of array analysis works 
on array data to find privatizable arrays.  
Privatization is a method that allocates a copy of 
the complete or working portion of the array to 
each parallel instance that references it as the 
data carries no dependencies for the segment in 
question.  Access to the array is analyzed to 
determine an equation of access into the array, 
then, if possible, that array can be privatized.  
Specifically this is called array data-flow 
analysis.  Figure 2 shows a segment of code that 
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has a data dependence and thus cannot be 
privatized. 
 
for (i = 0; i < x.length; ++i) { 
  for (j = 1; j < x[i].length; 
++j) { 
    x[i][j - 1] = f (x[i][j]); 
  } 
} 

Figure 2. Non-privatizable Array 

In order to parallelize the code segment the loop 
requires a transformation of the data, if a 
transformation cannot be applied then the array 
analysis will fail to parallelize this segment of 
code. 

These two types of analysis offer very powerful 
tools that parallelize code based on scalar and 
array variables in the loop segments of the code.  
However, to maximize the potential of these 
forms of analysis, the compiler must be able to 
optimize inter-procedurally, thus allowing 
parallel optimizations to span across function 
boundaries.  As the example in Figure 2 
illustrates, many loops call functions inside their 
bounds and in order for the compiler to 
understand the data-flow completely it must be 
able to optimize across the function call. 

However, there are some drawbacks to using 
these forms of analysis.  We mentioned before 
that these techniques are most often used in 
imperative languages; however, they can only 
support a subset of language features of a 
language like C.  Advanced features like 
pointers are not available to compilers that use 
these analyses heavily because it is almost 
impossible for them to detect the dependencies 
on dynamic pointer-based data.  Another point is 
that these focus heavily on parallelizing loops in 
the source.  In an imperative setting, this is quite 
powerful; however, with a richer language like 
C++ or Java these analysis techniques might not 
do the trick. 

COMMUTATIVITY ANALYSIS 

Commutativity analysis was originally used in 
other areas of computer science, but this 
technique adapts well to using languages with 
more advanced feature sets.  In their article, 
Martin Rinard and Perdo Diniz proposed using 
commutativity analysis with a subset of the 
language C++.  They claim that, “the key to 
automatically parallelizing dynamic pointer-
based computations,” is commutativity analysis 
[5].  This is a technique that is, “designed to 
automatically recognize and exploit commuting 
operations” [5]. 

They use the basic mathematical definition for 
commutativity, that is two operations that can be 
preformed in any order and still obtain the same 
result.  In order to assure proper translation and 
execution, they propose some restrictions to the 
use of instance variables and that operations 
must be separable.  The restrictions on instance 
variables include nested object instance 
variables cannot be directly accessed and may 
only be accessed via methods that have the 
object as a receiver [5].  “Commutativity 
analysis is designed to work with separable 
operations,” or operations that, “can be 
decomposed into and object section and an 
invocation section” [5]. 

All of the code that commutativity analysis will 
identify must be separable into these two 
sections.  The object section performs any 
access into the receiver.  The invocation section 
makes calls to operations, the receiver is not 
accessible in this section, nor can it be.  The 
separability restriction appears to hinder 
development of code that invokes an operation 
that reads the receiver to then update that 
receiver with the newly computed value. 

However, Rinard and Diniz suggest two 
extensions to this method that alleviate the 
burdens and allow for courser grain 
parallelization.  In order to test the 
commutability of operation the compiler uses 
two conditions.  These conditions are as follows: 
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“the new value of each instance variable 
of the receiver objects of A and B must 
be the same after the execution of the 
object section of A followed by the 
object section of B as after the execution 
of the object section of B followed by 
the object section of A” [5]. 

and 

“the multiset of operations directly 
invoked by either A or B under the 
execution order A followed by B must 
be the same as the multiset of operations 
directly invoked by either A or B under 
the execution order B followed by A” 
[5]. 

If the two operations execute the same method 
with the same receiver object and the same 
parameter values then the two operations are 
considered identical.  These two tests determine 
the commutability of all of the operations in a 
program.  Figure 3, taken from the article by 
Rinard and Diniz shows a source segment that 
can be determined to be commutative using 
these two tests. 
 
class Node { 
  private: 
    bool marked; 
    int value, sum; 
    Node *left, *right; 
  public: 
    void visit (int); 
}; 
 
void Node::visit (int p) { 
  sum = sum + p; 
  if (!marked) { 
    marked = true; 
    if (left != NULL) 
      left->visit (value); 
    if (right != NULL) 
      right->visit (value); 
    } 
} 

Figure 3. Commutativity Analysis Example [5] 

The method visit is parallelizable because it 
fulfills all of the criteria set forth.  Breaking 
down what is happening in the method visit, one 
can see that although there are two recursive 

calls within the visit method, the set of all calls 
to the method will remain over the same set.  
Also there is no dependence on the member sum, 
meaning that regardless of the execution order, 
the sum member will retain the same exact 
value. 

Using the above restrictions one can see that the 
member instance variables sum, marked, left, 
and right are all accessed within the method 
sum, this conforms to the restriction that none of 
them are directly accessed.  This also conforms 
to the other restriction that the instance variables 
are only accessed by a method that has the 
object as a receiver.  These restrictions make the 
language a bit more difficult to program in.  For 
instance, Figure 4 shows a segment of source 
code that cannot be automatically parallelized by 
commutativity analysis.  Note the use of 
instance variables, the variable empty is accessed 
from outside of its object. 
 
void Calculator::calculate 
(Stack s) { 
  if (!s.empty) { 
    value = this->operate (s, 
value); 
  } 
} 

Figure 4. A method that cannot 
be parallelized by Commutativity Analysis 

Beyond that, the assignment of the instance 
variable value is done in a manner that is not 
separable.  The statement: 

value = this->operate (s, value) 

breaks the rules of separability.  The invocation 
section is entwined with the object section in 
fact the object section depends on the invocation 
section to perform its calculations.  In today’s 
programming environment, this can be a 
significant restriction. 

HIGH LEVEL PARALLELIZATION 

The techniques discussed so far are techniques 
that focus primarily on the backend of the 
compiler; to generate binary output that is 
parallelized.  However, in their paper, Chow et 
al. make a proposal of techniques that put 
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parallelized output into an intermediate 
language.  Their proposal focuses on building a 
“portable lightweight parallel run-time library,” 
that parallelized programs link to [2].  This is 
quite different from other approaches in that 
they focused on a platform independent build 
despite that they had selected a specific test 
platform.  They used the IBM ASTI high-level 
optimizer to form “the foundation” of their 
compiler [2].  This compiler uses the 
FORTRAN 90 and C languages as input. 

The front end performs several steps to prepare 
the program for the automatic parallelization.  
The first step that is outlined in the process is 
called scalarization.  This process converts 
FORTRAN 90 specific array statements into 
equivalent loops, preserving the semantic of the 
statements. 

The second step outlined is a transformation 
stage.  This transformation stage optimizes loops 
for single processor machines. 

Finally, there is an interprocedural analysis and 
inlining stage.  This stage focuses on the 
parallelization optimizations.  An 
interprocedural data flow analysis is performed 
to enhance the parallelization results.  Currently 
however, the interprocedural data flow module 
has been removed from the compiler. 

This technique has been improved, with 
enhancements made to the optimizer for better 
parallelization results.  Such enhancements 
include locality optimizations, “select iteration-
reordering transformations”, and outlining [2].  
They claim that locality optimization “is a 
fundamental step for ... SMP parallelization,” 
because this identifies the loops on which 
parallelization is attempted. 

The second enhancement they added was 
outlining, a method that can be comparatively 
described as the opposite of inlining.  The 
process includes defining regions of the program 
and combining them into a procedure.  The 
claim is that the outlining process “simplifies 
storage management, because each thread 
participating in execution of the loop gets a 
separate copy of local variables” [2]. 

Another point they make is that the outlining 
process is used as a basis to call their library 
routines.  The outlining process determines the 
parameters of the newly created procedure.  The 
core to their work lies in the parallel run-time 
library.  This library, “employs a join/fork”, 
system that controls the processes. 

CONCLUSIONS AND FUTURE WORK 

Each of the techniques we have presented has 
merit in their respective applications.  Scalar and 
array analyses when used together provide a 
powerful toolkit to parallelize applications.  
Though in general the techniques work best for 
imperative languages, it may be that extensions 
can be made to the techniques to allow them to 
work for other paradigms.  Beyond that, a more 
dynamic data based extension might be possible 
to allow for pointer-based computations. 

Commutativity analysis worked quite well using 
the subset of C++; however, Rinard and Diniz 
indicate that commutativity analysis is quite 
similar, in principle, to array reduction 
techniques used in other parallelizing compilers.  
This is an area that needs to be explored more, 
the commonality between commutativity 
analysis and array reduction techniques. 

Another question that arises is can these 
techniques be used in conjunction with each 
other.  Currently there is no attempt to use 
multiple parallelizing techniques in a compiler.  
However, the complexity of such a task, as well 
as possible incompatibilities, might make it nigh 
impossible.  Commutativity analysis imposes 
restrictions on the programmer, can these 
restrictions be removed and still maintain the 
ability to parallelize complex pointer-based 
operations.  If these restrictions are removed will 
others be imposed in their place due to the limits 
of parallel computing. 

Each of these techniques are applied only to a 
subset of all types of distributed systems, how 
will other types of distributed systems affect 
each of these algorithms.  Are these techniques 
even valid for other types of distributed 
computing and what is the limit that they might 
have?  Bal et. al discuss “workstation-LAN” and 
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“workstation-WAN” in their article, but it 
remains an open question whether these 
techniques valid for such systems, and if they 
are what changes might need to be made to 
adapt them [1]. 

Whatever the future of parallelizing techniques, 
there definitely is a future for automatically 
parallelizing compilers.  With continuing 
advancements to ILP, VLIW and multiprocessor 
architectures, and new manufacturing techniques 
such as nanotechnology which promises 
dramatic changes to processor design, parallel 
computing may be entering a new era of 
availability and utility.  And as technology 
broadens and applications become more 
distributed, the importance of systems being able 
to compute in parallel at ever coarser 
granularities will be crucial. 
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