

5 - 1

COMPARATIVE SURVEY OF APPROACHES
TO AUTOMATIC PARALLELIZATION

Nicholas DiPasquale, Vijay Gehlot and Thomas Way

Department of Computing Sciences
Villanova University

800 E. Lancaster Ave.
Villanova PA, 19085

nicholas.dipasquale@villanova.edu
vijay.gehlot@villanova.edu
thomas.way@villanova.edu

ABSTRACT

Automatic parallelization in a compiler is
becoming more important as computer
technologies expand to include more distributed
computing. This paper focuses on a
comparative study of past and present
techniques for automatic parallelization. It
includes techniques such as scalar analysis, array
analysis, and commutativity analysis.

The need for automatic parallelization in
compilers is growing as clusters and other forms
of distributed computing are becoming more
popular just as CPU technology is trending
towards higher degrees and coarser granularities
of parallelism. In this paper, we review known
parallelization techniques for thread level
identification in programs, and argue that these
same techniques may also apply to generalized
coarse-grain task identification.

INTRODUCTION

Compiler technology is facing a change in
today's shifting market. As distributed
computing increasingly permeates the field; the
software industry will place a demand on their
compiler technology to parallelize software
automatically. Automatically identifying
opportunities for parallelization is a critical step

in generating efficient code for a variety of
multithreading applications and has been studied
for many years [2,3,4,6,8,10,11]. Although
hardware can provide some degree of fine-
grained parallelism [7,9], the burden falls to
compiler researchers to develop techniques that
will automatically parallelize applications from
the source of a program. It is important to start
with a definition of exactly what is meant by
distributed system. We will use the definition
that Bal et al. gave in their survey of parallel
programming languages:

“a distributed system consists of
multiple autonomous processors that do
not share primary memory, but
cooperate by sending messages over a
communications network”[1].

This paper focuses on a comparative study of
past and present techniques for automatic
parallelization. It includes techniques such as
scalar analysis, array analysis, commutativity
analysis, as well as other related approaches.
Our purpose is for readers to get a basic
understanding of the techniques presented in this
article and how they are used currently to create
compilers that automatically generate
parallelized applications.

Past techniques provided solutions for
imperative languages like FORTRAN and C;
however, these might not be enough. Past
compiler research on automatic parallelization
dealt with parallelizing sections of a source
program with a specific system in mind. Such

Proceedings of MASPLAS'05
Mid-Atlantic Student Workshop on
Programming Languages and Systems
University of Delaware, April 30, 2005

5 - 2

compilers would parallelize loops and other
segments of code, and introduce synchronization
and message passing code to maintain
correctness. Such compilers used scalar and
array analysis techniques that made it difficult to
use language features like pointers in a section
to be parallelized automatically, a restriction that
has become less practical.

Recently, a shift in paradigm began and
researchers started to look into other techniques
for automatically generating parallelized
programs, such as commutativity analysis
applied over a broader window of the source
code. This type of analysis worked quite well
for subsets of newer languages like C++, which
enables more flexibility in today's development
environments.

Whatever the language, there is a growing need
for these compilers and reliable techniques must
be developed and refined. However, the need for
automatic parallelization in compilers is growing
as clusters and other forms of distributed
computing are becoming more popular just as
CPU technology is trending towards higher
degrees and coarser granularities of parallelism.
Thus, there is a need for static compiler
techniques that identify coarse-grain tasks from
program source, breaking the source into
independent segments, which can be executed in
parallel across multiple processors.

SCALAR AND ARRAY ANALYSIS

Scalar analysis and array analysis are two
techniques often used in conjunction; thus they
are presented together in this paper.
Traditionally, these forms of analysis are used in
imperative languages like FORTRAN and C
because of the nature of the analyses. Scalar
analysis breaks down a program to analyze
scalar variable use and the dependencies that
they have. A dependency as defined by Hall et
al. is “when a memory location written on one
iteration of a loop is accessed (read or write) on
a different iteration.”[6] Scalar analysis will
identify such cases that can be parallelized
simply due to these dependence complications.
The sections that are not identified as
parallelizable are left to array analysis to

parallelize them; otherwise, they will not be
parallelized. In addition, scalar analysis
“determines [if] parallelization may be enabled
by privatization or reduction transformations.”
[6]

Scalar analysis is also used to check
dependencies on array elements by their indices.
This type of analysis is called “scalar symbolic
analysis” [6], and is preformed by transforming
the indices into solvable affine equations that
express the indices of the array. This
transformation brings the problem to a more
solvable integer-programming problem, that
there are a multitude of solutions available to
solve the problem in a reasonable amount of
time.

for (i = 0; i < x.length; ++i) {
 for (j = 0; j < i; ++j) {
 x[i * x.length + j] = z[j];
 }
}

Figure 1. Loop by Array Analysis

 Unfortunately, this analysis is applicable only to
specific forms of program constructs. For
example, if an array is accessed in a linear form
via an equation that acts as if the array were
multidimensional, then this form of analysis
cannot parallelize the code. Figure 1 shows a
loop that follows this pattern. The loop accesses
the array in a standard linear fashion; however,
the access is performed by a function of two
variables. This type of situation is common in
computer graphics as well as in scientific
applications [6].

The counterpart to scalar analysis is array
analysis. One method of array analysis works
on array data to find privatizable arrays.
Privatization is a method that allocates a copy of
the complete or working portion of the array to
each parallel instance that references it as the
data carries no dependencies for the segment in
question. Access to the array is analyzed to
determine an equation of access into the array,
then, if possible, that array can be privatized.
Specifically this is called array data-flow
analysis. Figure 2 shows a segment of code that

5 - 3

has a data dependence and thus cannot be
privatized.

for (i = 0; i < x.length; ++i) {
 for (j = 1; j < x[i].length;
++j) {
 x[i][j - 1] = f (x[i][j]);
 }
}

Figure 2. Non-privatizable Array

In order to parallelize the code segment the loop
requires a transformation of the data, if a
transformation cannot be applied then the array
analysis will fail to parallelize this segment of
code.

These two types of analysis offer very powerful
tools that parallelize code based on scalar and
array variables in the loop segments of the code.
However, to maximize the potential of these
forms of analysis, the compiler must be able to
optimize inter-procedurally, thus allowing
parallel optimizations to span across function
boundaries. As the example in Figure 2
illustrates, many loops call functions inside their
bounds and in order for the compiler to
understand the data-flow completely it must be
able to optimize across the function call.

However, there are some drawbacks to using
these forms of analysis. We mentioned before
that these techniques are most often used in
imperative languages; however, they can only
support a subset of language features of a
language like C. Advanced features like
pointers are not available to compilers that use
these analyses heavily because it is almost
impossible for them to detect the dependencies
on dynamic pointer-based data. Another point is
that these focus heavily on parallelizing loops in
the source. In an imperative setting, this is quite
powerful; however, with a richer language like
C++ or Java these analysis techniques might not
do the trick.

COMMUTATIVITY ANALYSIS

Commutativity analysis was originally used in
other areas of computer science, but this
technique adapts well to using languages with
more advanced feature sets. In their article,
Martin Rinard and Perdo Diniz proposed using
commutativity analysis with a subset of the
language C++. They claim that, “the key to
automatically parallelizing dynamic pointer-
based computations,” is commutativity analysis
[5]. This is a technique that is, “designed to
automatically recognize and exploit commuting
operations” [5].

They use the basic mathematical definition for
commutativity, that is two operations that can be
preformed in any order and still obtain the same
result. In order to assure proper translation and
execution, they propose some restrictions to the
use of instance variables and that operations
must be separable. The restrictions on instance
variables include nested object instance
variables cannot be directly accessed and may
only be accessed via methods that have the
object as a receiver [5]. “Commutativity
analysis is designed to work with separable
operations,” or operations that, “can be
decomposed into and object section and an
invocation section” [5].

All of the code that commutativity analysis will
identify must be separable into these two
sections. The object section performs any
access into the receiver. The invocation section
makes calls to operations, the receiver is not
accessible in this section, nor can it be. The
separability restriction appears to hinder
development of code that invokes an operation
that reads the receiver to then update that
receiver with the newly computed value.

However, Rinard and Diniz suggest two
extensions to this method that alleviate the
burdens and allow for courser grain
parallelization. In order to test the
commutability of operation the compiler uses
two conditions. These conditions are as follows:

5 - 4

“the new value of each instance variable
of the receiver objects of A and B must
be the same after the execution of the
object section of A followed by the
object section of B as after the execution
of the object section of B followed by
the object section of A” [5].

and

“the multiset of operations directly
invoked by either A or B under the
execution order A followed by B must
be the same as the multiset of operations
directly invoked by either A or B under
the execution order B followed by A”
[5].

If the two operations execute the same method
with the same receiver object and the same
parameter values then the two operations are
considered identical. These two tests determine
the commutability of all of the operations in a
program. Figure 3, taken from the article by
Rinard and Diniz shows a source segment that
can be determined to be commutative using
these two tests.

class Node {
 private:
 bool marked;
 int value, sum;
 Node *left, *right;
 public:
 void visit (int);
};

void Node::visit (int p) {
 sum = sum + p;
 if (!marked) {
 marked = true;
 if (left != NULL)
 left->visit (value);
 if (right != NULL)
 right->visit (value);
 }
}

Figure 3. Commutativity Analysis Example [5]

The method visit is parallelizable because it
fulfills all of the criteria set forth. Breaking
down what is happening in the method visit, one
can see that although there are two recursive

calls within the visit method, the set of all calls
to the method will remain over the same set.
Also there is no dependence on the member sum,
meaning that regardless of the execution order,
the sum member will retain the same exact
value.

Using the above restrictions one can see that the
member instance variables sum, marked, left,
and right are all accessed within the method
sum, this conforms to the restriction that none of
them are directly accessed. This also conforms
to the other restriction that the instance variables
are only accessed by a method that has the
object as a receiver. These restrictions make the
language a bit more difficult to program in. For
instance, Figure 4 shows a segment of source
code that cannot be automatically parallelized by
commutativity analysis. Note the use of
instance variables, the variable empty is accessed
from outside of its object.

void Calculator::calculate
(Stack s) {
 if (!s.empty) {
 value = this->operate (s,
value);
 }
}

Figure 4. A method that cannot
be parallelized by Commutativity Analysis

Beyond that, the assignment of the instance
variable value is done in a manner that is not
separable. The statement:

value = this->operate (s, value)

breaks the rules of separability. The invocation
section is entwined with the object section in
fact the object section depends on the invocation
section to perform its calculations. In today’s
programming environment, this can be a
significant restriction.

HIGH LEVEL PARALLELIZATION

The techniques discussed so far are techniques
that focus primarily on the backend of the
compiler; to generate binary output that is
parallelized. However, in their paper, Chow et
al. make a proposal of techniques that put

5 - 5

parallelized output into an intermediate
language. Their proposal focuses on building a
“portable lightweight parallel run-time library,”
that parallelized programs link to [2]. This is
quite different from other approaches in that
they focused on a platform independent build
despite that they had selected a specific test
platform. They used the IBM ASTI high-level
optimizer to form “the foundation” of their
compiler [2]. This compiler uses the
FORTRAN 90 and C languages as input.

The front end performs several steps to prepare
the program for the automatic parallelization.
The first step that is outlined in the process is
called scalarization. This process converts
FORTRAN 90 specific array statements into
equivalent loops, preserving the semantic of the
statements.

The second step outlined is a transformation
stage. This transformation stage optimizes loops
for single processor machines.

Finally, there is an interprocedural analysis and
inlining stage. This stage focuses on the
parallelization optimizations. An
interprocedural data flow analysis is performed
to enhance the parallelization results. Currently
however, the interprocedural data flow module
has been removed from the compiler.

This technique has been improved, with
enhancements made to the optimizer for better
parallelization results. Such enhancements
include locality optimizations, “select iteration-
reordering transformations”, and outlining [2].
They claim that locality optimization “is a
fundamental step for ... SMP parallelization,”
because this identifies the loops on which
parallelization is attempted.

The second enhancement they added was
outlining, a method that can be comparatively
described as the opposite of inlining. The
process includes defining regions of the program
and combining them into a procedure. The
claim is that the outlining process “simplifies
storage management, because each thread
participating in execution of the loop gets a
separate copy of local variables” [2].

Another point they make is that the outlining
process is used as a basis to call their library
routines. The outlining process determines the
parameters of the newly created procedure. The
core to their work lies in the parallel run-time
library. This library, “employs a join/fork”,
system that controls the processes.

CONCLUSIONS AND FUTURE WORK

Each of the techniques we have presented has
merit in their respective applications. Scalar and
array analyses when used together provide a
powerful toolkit to parallelize applications.
Though in general the techniques work best for
imperative languages, it may be that extensions
can be made to the techniques to allow them to
work for other paradigms. Beyond that, a more
dynamic data based extension might be possible
to allow for pointer-based computations.

Commutativity analysis worked quite well using
the subset of C++; however, Rinard and Diniz
indicate that commutativity analysis is quite
similar, in principle, to array reduction
techniques used in other parallelizing compilers.
This is an area that needs to be explored more,
the commonality between commutativity
analysis and array reduction techniques.

Another question that arises is can these
techniques be used in conjunction with each
other. Currently there is no attempt to use
multiple parallelizing techniques in a compiler.
However, the complexity of such a task, as well
as possible incompatibilities, might make it nigh
impossible. Commutativity analysis imposes
restrictions on the programmer, can these
restrictions be removed and still maintain the
ability to parallelize complex pointer-based
operations. If these restrictions are removed will
others be imposed in their place due to the limits
of parallel computing.

Each of these techniques are applied only to a
subset of all types of distributed systems, how
will other types of distributed systems affect
each of these algorithms. Are these techniques
even valid for other types of distributed
computing and what is the limit that they might
have? Bal et. al discuss “workstation-LAN” and

5 - 6

“workstation-WAN” in their article, but it
remains an open question whether these
techniques valid for such systems, and if they
are what changes might need to be made to
adapt them [1].

Whatever the future of parallelizing techniques,
there definitely is a future for automatically
parallelizing compilers. With continuing
advancements to ILP, VLIW and multiprocessor
architectures, and new manufacturing techniques
such as nanotechnology which promises
dramatic changes to processor design, parallel
computing may be entering a new era of
availability and utility. And as technology
broadens and applications become more
distributed, the importance of systems being able
to compute in parallel at ever coarser
granularities will be crucial.

REFERENCES
[1] H. Bal, J. Steiner, and A. Tanenbaum.

Programming Languages for Distributed
Computing Systems. In ACM Computing
Surveys, Vol. 21. No. 3. 1989.

[2] J.-H. Chow, L. E. Lyon, and V. Sarkar.
"Automatic Parallelization for Symmetric
Shared-Memory Multiprocessors," in
Proceedings of CASCON: 76-89, Toronto, ON,
November 12-14, 1996.

[3] M. Cintra and, D. R. Llanos. Toward Efficient
and Robust Software Speculative Parallelization
in Multiprocessors. In Proceedings of ACM
SIGPLAN Symposium on Principles and
Practice of Parallel Programming, June 2003.

[4] R. CYTRON. DoAcross: Beyond vectorization for
multiprocessors. In Int’l. Conf. on Parallel
Processing, Aug. 1986.

[5] M. Diniz and P. Diniz. Commutativity
Analysis: A New Analysis Technique for
Parallelizing Compilers. In ACM Transactions
on Programming Languages and Systems, Vol.
19, No. 6, pages 1-47, 1997.

[6] M. W. Hall, S. Amarsinghe, B. R. Murphy, S.
Liao, and M. Lam. Detecting Course-Grain
Parallelism using an Interprocedural
Parallelizing Compiler. In Proceedings
Supercomputing ’95, December 1995.

[7] Intel Corporation, Intel® Architecture Software
Developer's Manual with Preliminary
Willamette Architecture Information, manual
available at http://developer.intel.com/.

[8] J. G. Steffan and T. C. Mowry. The Potential
for Using Thread-Level Data Speculation to
Facilitate Automatic Parallelization. In
Proceedings of the Fourth International
Symposium on High-Performance Computer
Architecture, Las Vegas, Nevada, February 2-4,
1998.

[9] S. Thakkar and T. Huff. "Internet Streaming
SIMD Extensions," IEEE Computer: 32:26-34,
1999.

[10] M. J. Wolfe, High Performance Compilers for
Parallel Computer, Addison-Wesley Publishing
Company, Redwood City, California, 1996.

[11] Hans Zima, Supercompilers for Parallel and
Vector Computers, ACM Press, New York,
NY, 1990.

