
The logic of tasks

Giorgi Japaridze∗

Department of Computing Sciences, Villanova University
800 Lancaster Avenue, Villanova, PA 19085, USA

http://www.csc.vill.edu/faculty/japaridz/html/home.html

Abstract

The paper introduces a semantics for the language of classical first
order logic supplemented with the additional operators u and u. This
semantics understands formulas as tasks. An agent (say, a machine or a
robot), working as a slave for its master (say, the user or the environment),
can carry out the task αuβ if it can carry out any one of the two tasks
α, β, depending on which of them was requested by the master; similarly,
it can carry out uxα(x) if it can carry out α(x) for any particular value
for x selected by the master; an agent can carry out α→β if it can carry
out β as long as it has, as a slave (resource), an agent who carries out
α; finally, carrying out P , where P is an atomic formula, simply means
making P true; in particular, ⊥ is a task that no agent can carry out.
When restricted to the language of classical logic, the meaning of formulas
is isomorphic to their classical meaning, which makes our semantics a
conservative extension of classical semantics.

This semantics can claim to be a formalization of the resource philos-
ophy associated with linear logic, if resources are understood as agents
carrying out tasks. The classical operators of our language correspond to
the multiplicative operators of linear logic, while u and u correspond to
the additive conjunction and universal quantifier, respectively.

Our formalism may also have a potential to be used in AI as an alter-
native logic of planning and action. Its main appeal is that it is immune
to the frame problem and the knowledge preconditions problem.

The paper axiomatically defines a logic L in the above language and
proves its soundness and completeness with respect to the task semantics
in the following intuitive sense: L ` α iff α can be carried out by an
agent who has nothing but its intelligence (i.e. no physical resources or
external sources of information) for carrying out tasks. This logic is shown
to be semidecidable in the full language and decidable when the classical
quantifier (but not u) is forbidden in it.

∗Supported by Summer Research Grant from Villanova University

1



1 Introduction

Classical logic is the logic of facts, expressed in natural languages with narrative
sentences: “The house is clean”, “The monster is dead”, etc.

The logic I am going to introduce is the logic of tasks, normally expressed
in natural languages with imperative sentences: “Clean the house!”, “Kill the
monster!”, etc.

While facts have the values true or false, tasks have the values accomplished
or failed.

Even though natural languages may be using different grammatical forms
for expressing facts and tasks, such as the narrative and imperative forms, the
formal language we employ does not make such a distinction, and every atomic
fact α is, at the same time, considered the atomic task that is accomplished if
and only if α is true.

The difference between classical logic and our logic is in the underlying
philosophy, which is deterministic for the former and nondeterministic for the
latter. In classical logic, the true/false value of every sentence is predetermined,
while in the logic of tasks the initial semantical value of a sentence may be neither
accomplished nor failed, and become one of them only later. For example, the
value of the task “Become a millionaire” for me at this point is not determined,
— otherwise any activities directed towards accomplishing this task would be
meaningless; whether this task is accomplished or not can be judged only in
the eventual situation — say, when I die or when the world ends. Facts can
be considered a special sort of tasks whose values are predetermined. This
nondeterministic philosophy and distinction between facts and (proper) tasks,
however, has no reflection in the formal semantics we choose: the value of a
task is only assessed in the eventual situation, so that every task is then either
accomplished or failed, and the semantics does not care whether this value was
determined “from the very beginning” or became so “later”.

Using words such as “initially” or “later” might have suggested that the
logic we are talking about is a sort of temporal logic, which, however, is not
the case. Our approach, just as the approach of classical logic, has no concept
of time: the accomplished/failed values, just as the true/false values in classi-
cal logic, are not relative to when. If some sentences of the natural language,
such as “The house is clean”, can be true today but false tomorrow, that only
means that they are incomplete and hence meaningless. The way to make such
an expression meaningful is to either assume a fixed time context, or to explic-
itly specify the latter, as in the sentence “The house is clean at the noon of
March 1, 2000”, whose value is no longer time relative. Once such a sentence
becomes true (accomplished), it stays so forever; and it is false (failed), if it has
never become true. Intuitively this means that tasks expressed with impera-
tive sentences such as “Become a millionaire” or “Clean the house” should be
considered accomplished if and only if their narrative counterparts, such as “I
have become a millionaire” or “The house is (has been) clean(ed)” are true in

2



a certain situation that we call the eventual situation, and it does not matter
when or by whom they were made true.

Thus, at the level of atomic facts/tasks, we have a perfect isomorphism
between classical formal semantics and our semantics, where the values true
and false correspond to the values accomplished and failed, respectively.

All the operators of classical logic are also used in our language, and the
above isomorphism extends to compound expressions built from those operators,
too:

• ⊥ is a task that is never accomplished;

• the task α∧β is accomplished iff both α and β are accomplished;

• the task α→β is accomplished iff β is accomplished whenever α is accom-
plished;

• the task ∀xα(x) is accomplished iff the task α(x) is accomplished for all
particular values of x, etc.

Of course merely replacing “true” by “accomplished” would hardly take us to
any place new and interesting. The novelty starts when we extend the language
with certain special operators that have no classical counterparts.

The main operator of this kind is u, resembling by its shape and, in a certain
sense, also by meaning, the operator ∧.

Notice that when we talk about tasks, we have two agents in mind: the
agent who has to accomplish the task (clean the house), and the agent who sets
the task (requests “Clean the house!”). The former can be called the slave, and
the latter the master. A good philosophical point of departure is to think of
the slave as a machine or a robot, and think of the master as the user or the
environment. At the level of atomic tasks, the presence of the two agents is not
really visible: as we don’t care about timing, the request “Clean the house!” is
assumed to be automatically made, so that the master hardly plays any role.

As for
αuβ,

this is a task that signifies no particular request for the slave, but rather two
potential requests that the master can make, i.e. two potential tasks that the
slave may have to carry out: α and β. The slave is able to carry out this task,
if it can accomplish any particular one of the two tasks α and β, depending on
which of them is requested by the master. This task is generally easier to carry
out than α∧β. The latter obligates the slave to accomplish both of the tasks α
and β (two tasks), while the former only obligates it to accomplish either of the
tasks α and β (one task). For example, the agent may have enough time and
energy to clean either the house or the lawn, — any one of the two, — but it

3



may not have sufficient resources to clean both the house and the lawn. In this
case it can carry out

Clean the house u Clean the lawn,

but cannot accomplish

Clean the house ∧ Clean the lawn.

Moreover, this agent can carry out the task

Clean the house u ¬Clean the house,

while no agent can ever accomplish the contradictory task

Clean the house ∧ ¬Clean the house.

Thus, the task αuβ is accomplished if the master requests α and α is accom-
plished, or the master requests β and β is accomplished. If the master does not
make either request, αuβ is considered accomplished as there was no concrete
task for the slave that it failed to carry out.

In the formalism, making a request is expressed by replacing αuβ with α
or β. So that in the process of what we can call a realization of the task, αuβ
may evolve to either α, or β, or remain αuβ. This task thus has at least three
possible realizations, represented by the history sequences

〈αuβ, α, . . .〉,

〈αuβ, β, . . .〉

and
〈αuβ〉.

The “. . . ” in the first two sequences indicates that there are passible contin-
uations in case α or β are complex tasks.

The meaning of
uxα(x)

is the same as the meaning of

α(a0) u α(a1) u . . . ,

where a0, a1, . . . are all the objects of the universe of discourse. That is, the
task uxα(x) is accomplished if, in the process of realization, the master re-
quests α(a) for one particular object a (replaces uxα(x) with α(a)) and α(a)
is accomplished, or if the master does not make such a request at all.

4



Example: Where the universe of discourse is all the targets (geographic
locations) on the earth, the task carried out by a transcontinental missile can
be expressed by

uxHit(x).

The missile (slave) will hit any one particular target the launcher (master) tells
it to, but by no means can it hit all the targets, so that it fails to carry out the
task

∀xHit(x).

Let us now revisit classical operators for the case when they are applied to
tasks containing u or u. For the slave, carrying out α∧β means carrying out
both α and β; for the master, having a slave carrying out α∧β means the same as
having two slaves, one of which carries out α and the other β. So that the master
can make any possible requests in α and β in any order, including simultaneous
requests. For example, if α = α0uα1 and β = β0uβ1, where α0, α1, β0, β1 are
atomic, the following list shows some of the possible realizations of α∧β:

1. 〈(α0uα1)∧(β0uβ1)〉 (master made no requests);

2. 〈(α0uα1)∧(β0uβ1), α0∧(β0uβ1)〉 (master made a request only in α);

3. 〈(α0uα1)∧(β0uβ1), (α0uα1)∧β1, α0∧β1〉 (master first made a request in
β and then in α);

4. 〈(α0uα1)∧(β0uβ1), α0∧β1〉 (master made a simultaneous request in both
α and β).

In case (1), α∧β is accomplished; in case (2), α∧β is accomplished iff α0 is
accomplished; and in cases (3) and (4), α∧β is accomplished iff both α0 and β1

are accomplished.
Everything we said about α∧β also applies to α∨β, except that α∨β is

considered accomplished if and only if at least one (rather than both) disjunct
is eventually accomplished.

The intuitive meaning of the task

α→β

is the following: To accomplish α→β for the slave means to accomplish β as
long as α is accomplished under the slave’s command. In other words, in the
antecedent of the implication, the roles of the master and the slave are inter-
changed. To the master’s requests in β the slave can reply by counterrequests in
α. The whole task will be accomplished, if the consequent is eventually accom-
plished or the antecedent is failed. Notice that the accomplished/failed value of
a (sub)task is not relative to whether the (sub)task appears in the antecedent
or the consequent of an implication. What is relative is only who commands
and in whose “interests” it is to have the (sub)task accomplished or failed.

5



Example: The agent may not have sufficient resources to unconditionally
carry out the task

Clean the house u Clean the lawn,

but he may be able to accomplish this task provided that it is given either a mop
or a rake, — whichever he requests. Then such an agent can (unconditionally)
carry out the task

(Give me a mop u Give me a rake) → (Clean the house u Clean the lawn).

At any time master can request either cleaning the house or cleaning the lawn.
And also at any time the slave can request either giving him a mop or giving
him a rake. The task is accomplished if the request of the master (if there was
one) is satisfied, or if the request of the slave is not satisfied.

So that one of the possible realizations here is:

1. (Give me a mop uGive me a rake) → (Clean the house uClean the lawn)
(the initial state of the task);

2. (Give me a mop uGive me a rake) → Clean the house (master requested
to clean the house);

3. Give me a mop → Clean the house (slave requested to give him a mop).

Then the task is accomplished if Clean the house has the value accomplished
(the house has been cleaned), or Give me a mop has the value failed (a mop has
not been given to the slave).

Just as in the case of conjunction, any order of requests is possible in a
realization of the above task. The slave could have made a request before the
master did (even though such impatience might have been unreasonable of him),
or the master and the slave could have made their requests simultaneously.

Generally, a positive occurrence1 of u or u signifies master’s choice of an
action (request), and a negative occurrence signifies slave’s choice.

To get a feel of the meaning of tasks with more than one nested →, let us
look at another example:

(
(Open the closet u Open the shed)→(Give me a mop u Give me a rake)

)

→ (Clean the house u Clean the lawn).

Here the master may request, say, to clean the house, the slave may reply by
the counterrequest to give him a mop, to which the master may reply by the
counterrequest to open the closet. The task is then accomplished, if the house
has been cleaned, or if a mop has not been given to the slave while the closet
has been opened.

The operators t and t are considered abbreviations defined by
1An occurrence is positive, if it is in the antecedent of an even number of occurrences of

→, with ¬α understood as α→⊥. Otherwise the occurrence is negative.

6



• αtβ =
(
(α→⊥)u(β→⊥)

)
→⊥;

• txα(x) =
(ux(α(x)→⊥)

)
→⊥.

An agent carrying out αtβ should select either α or β and then accomplish
the chosen subtask; if no choice is made, then the task is failed. Why this is so
can be seen if we disabbreviate αtβ and note that (α→⊥)→⊥ is the same as
α, in the sense that an agent can accomplish (α→⊥)→⊥ if and only if it can
accomplish α using the same strategy in the α part of (α→⊥)→⊥ as it uses in
α.

Thus, a positive occurrence of t signifies slave’s choice rather than master’s
choice as this was the case with u, and a negative occurrence of t, as we may
guess, signifies master’s choice.

Example: Let P be the task which is accomplished if and only if the woman
taking a pregnancy test is pregnant. Then the task carried out by a disposable
pregnancy test device can be expressed by Pt¬P . Here not only does the slave
“see to” accomplishing one of the tasks P or ¬P , but it also effectively tells the
master which of them, exactly, is accomplished.

Such a slave is certainly more valuable a resource than a slave accomplishing
the task P∨¬P . The latter is a trivially accomplished task and thus any agent
can “accomplish” it. The former task, though, is not that trivial. If it was, then
the pregnancy test manufacturers would go bankrupt.

The following two sections contain strict formal definitions of the syntax
and the semantics informally introduced in this section. Section 4 introduces
an axiomatic system L in this formalism, which is shown to be semidecidable
in the full language and polynomial space decidable when classical quantifiers
are is forbidden in it. This restricted language still contains the quantifier-type
operatorsu andt, so its decidability may not be something we would naturally
expect from a logic with quantifiers.

6 and 8 contain a proof of the soundness and completeness of L in the
following intuitive sense: L ` α if and only if α can be carried out by an agent
who has nothing but its intelligence for accomplishing tasks. In other words,
such an agent has no physical resources or external sources of information to
use, and the only way for it to accomplish the task is by means of managing
resources implied by the task.

A simple example of a task of this type is (αuβ)→(αuβ). If the master
requests α (resp. β) in the consequent, the slave requests α (resp. β) in the
antecedent. Evidently this strategy guarantees the slave a success.

Not all the formulas that have the form of a classical tautology are valid in
this sense though. A counterexample is

(αuβ)→
(
(αuβ)∧(αuβ)

)
.

If the master requests α in one of the conjuncts of the consequent and β in the
other conjunct, then neither requesting α nor requesting β in the antecedent

7



by the slave would guarantee that the task is accomplished. Say, if the slave
requests β and eventually β is accomplished and α is failed, then the whole task
is failed.

This may remind us of linear logic [4] and its variations. They, too, reject
the principle α→α∧α. One can show that every formula that has a form of a
theorem of BCK (linear logic + the weakening rule)2 is also provable in L, with
the classical operators of the latter understood as multiplicative operators of
linear logic, and the operators u and u understood as the additive conjunction
and quantifier, respectively. However, vice versa is not true. For example, every
formula of the form

((
α∧(γuδ)

)
u
(
β∧(γuδ)

)
u
(
(αuβ)∧γ

)
u
(
(αuβ)∧δ

))
→

(
(αuβ)∧(γuδ)

)

is provable in L, but the above formula is not a theorem of BCK.
Well, so much the worse for linear logic, the main philosophical motivation

for introducing which was to have a logic of resources. This claim has never
really been supported with a formal semantics, and linear logic owes its name
“resource logic” mostly to certain syntactic features (such as the forbidden rule
of contraction) rather than a strict and intuitively convincing resource semantics
behind it. The author believes that the semantics introduced in this paper has
all the chances to be considered an adequate formalization of resource intuition,
if resources are understood as agents accomplishing tasks (what is a task for the
slave, is a resource for the master). If so, then the fact that linear logic or BCK
are weaker than L signifies that they are simply incomplete as resource logics.

From the technical point of view, our semantics can be classified as a game
semantics, variations of which have been studied by a number of authors over
the past 40 years ([1, 2, 6, 8, 12, 13, 3]). With some technical differences in
game-playing protocols, common to all those semantics is the idea of considering
sentences as games between two players — proponent, who is trying to “defend”
the sentence, and opponent, who is “attacking” the sentence, where proponent
makes moves in positive occurrences of disjunction and negative occurrences of
conjunction, while opponent makes moves in negative occurrences of disjunction
and positive occurrences of conjunction.

Blass [2] was the first to notice the potential of game semantics to justify
linear logic, by considering two sorts of conjunction and disjunction in the lan-
guage, corresponding to two natural sorts of game-playing protocols. This idea
was rediscovered by the author of the present paper and further developed in
[8], where the decidability of the logic induced by this sort of game semantics
was proven (the question left unanswered in [2]), even though, just as in [2], no
axiomatization for that logic was found.

Apparently there are two major reasons why the game semantics offered
so far have not attracted sufficiently high attention of researchers: either they

2BCK is also known under the name Affine Logic. See [2].

8



seem not very natural and artificially adjusted to some non-semantical consid-
erations, such as justifying certain existing axiomatic systems (intuitionism or
linear logic), or totally depart from the original meaning of the language of
logic as a formal counterpart of natural language that allows us to talk about
the surrounding world), or both.

The author believes that the semantics introduced in this paper does not
suffer from the above shortcomings. He has deliberately avoided using game-
semantical terms to stress that “this is not just a game”.

I also believe that our logic, or certain conservative extensions of it in more
expressive languages, have a potential to become an alternative to the existing
logics of planning and action used in Artificial Intelligence. The reason for this
expectation is that our logic is immune to two major problems most planning
logics face: the frame problem and the knowledge preconditions problem. Here
is a very brief description of them:

Frame problem: Our actions usually change only a small part of the world
and leave unaffected everything else. However, when talking about the effects
of an action, we need to explicitly consider not only what this action changes,
but also what it does not affect, otherwise we may miss something and get
wrong conclusions. This results in dramatic increase in the representational
and inferential complexity of planning problems. For more details on the frame
problem, see [16].

Knowledge preconditions problem: Most artificial intelligence planners work
on the assumption that they have complete knowledge of the world, which,
in actual planning situations, is rarely the case. Moreover, certain pieces of
knowledge can be acquired from the environment’s reactions to certain actions
of the planning agent, so that the further action strategy of the agent may have
to be contingent on those reactions. The original formalism of the most popular
planning logic — situation calculus — fails to capture these nuances. Some
researchers ([5, 15]) have approached the problem by extending the language of
situation calculus with special means for representing knowledge. This, however,
significantly overburdens the formalism, can make things pretty messy, and the
corresponding logics typically no longer enjoy the property of semidecidability.
McCarthy and Hayes [14] were the first to recognize the knowledge preconditions
problem.

When our logic is used for planning, a planning situation is represented as
a certain task γ which usually has the form α→β, where β a description of the
goal task for the planning agent (slave) and α is a description of the resources
the agent possesses. The knowledge the agent has is nothing but knowledge of
the (state of) task γ, so there is no need in having special language or semantical
constructs representing knowledge — we don’t distinguish and don’t really need
to distinguish between physical resources and informational resources.

Actions of the planning agent are represented by replacing α1uα2 (oruxα(x))
with αi (or α(a)) in negative parts of γ. These replacements, by the very mean-
ing of this word, only affect the subformulas (resources) in which they are made,

9



which automatically neutralizes the frame problem.
Reactions of the environment are represented by replacing α1uα2 (oruxα(x))

with αi (or α(a)) in positive parts of γ. As the agent has full knowledge of the
state of the task it is accomplishing, these reactions are visible to him, so that
the knowledge update problem is naturally taken care of.

All this would be better understood on an example. Here is a verbal de-
scription of a simple planning problem, followed by a representation of it and a
solution in our logic:

There are several sorts of antifreeze coolant available to the agent, and his
goal is to

0. Fill the radiator of the car with a safe sort of coolant.
This is what the agent knows:

1. A sort of coolant is safe iff it does not contain acid.
2. A sort of coolant contains acid iff the litmus paper turns red when it

is used to test the coolant.
3. At least one of the sorts of coolant: c1, c2 is safe.

This is what the agent has or can:
4. A piece of litmus paper which he can use to test any one particular

sort of coolant,
and he also can

5. Fill the radiator using any one particular sort of coolant.
Can the agent accomplish the goal described in 0 if all the informational and

physical resources he has are the ones described in 1-5, and if yes, how?
Let us try to formalize the problem. First of all, we need to fix a universe of

discourse. This would be a certain set of sorts of coolant. c1 and c2 are elements
of this set.

Next, let us define the following four atomic tasks:

• A(x) that is accomplished iff coolant x contains acid;

• S(x) that is accomplished iff coolant x is safe;

• R(x) that is accomplished iff the litmus paper turns red when used for
testing coolant x;

• F (x) that is accomplished iff the radiator has been filled with coolant x.

Then the tasks/resources (0)-(5) can be expressed as follows:

0. ∃x(S(x)∧F (x)
)

1. ∀x(S(x) ↔ ¬A(x)
)

2. ∀x(A(x) ↔ R(x)
)

3. S(c1)∨S(c2)
4. ux(R(x)t¬R(x)

)

5. uxF (x)

10



To accomplish the goal task (0) having the resources (1)-(5) means nothing
but to accomplish the conditional task

(1)∧(2)∧(3)∧(4)∧(5)→(0)

unconditionally.
Here is a strategy for carrying out the above task without using any external

physical resources or sources of information:
At first, the agent replaces (4) with R(c1)t¬R(c1). The meaning of this

action is using the litmus paper for testing the coolant c1.
The environment should react by replacing R(c1)t¬R(c1) with either R(c1)

or ¬R(c1), for otherwise the task (4) is not accomplished, which would mean
that the agent did not really have the resource (accomplishing the task) (4), so
that the agent could then “wash his hands”. This step corresponds to observing,
by the agent, whether the litmus paper turns red or not.

The next action is contingent on what the reaction of the environment to
the previous action was.

If the reaction was R(c1), then the agent replaces (5) with F (c2). This means
having the radiator filled with c2.

And if the reaction was ¬R(c1), then the agent replaces (5) with F (c1),
which means having the radiator filled with c1.

It can be seen that this strategy guarantees success: the radiator will be
filled with safe coolant as long as none of the agent’s resources (1)-(5) fail to
do their job. This strategy will be successful no matter what the meanings of
A,S,R, F, c1, c2 really are.

Observe how naturally the knowledge preconditions problem was handled
without ever mentioning knowledge in the formalism, and how the frame prob-
lem was totally out of the scene.

Notice also the convenience of not distinguishing between informational (1-
3) and physical (4-5) resources, or between facts (A,S,R) and proper tasks (F ).
After all, it is not always clear where to draw a line between informational
and physical resources, or between facts and proper tasks. E.g., we well might
have listed R as a proper task rather than a fact. In any case, as our example
demonstrates, there is no need in bothering about drawing those lines.

Thus, the task (1)∧(2)∧(3)∧(4)∧(5)→(0) can be accomplished by an agent
who does not have any resources except those implied by (the antecedent of)
the task. By the soundness and completeness theorem for L, this is the case if
and only if L ` (1)∧(2)∧(3)∧(4)∧(5)→(0). So that, had our ad hoc methods
failed to find an answer, the existence of such an agent (strategy) could have
been established by showing that the task we are considering is provable in L.

Of course, just knowing that a task-accomplishing strategy exists, would
have very little practical value unless we could constructively find such a strat-
egy. No problem: according to Theorem 7.2, such a strategy can be effectively

11



constructed from an L-proof of the task. Moreover, according to Theorem 7.3
which is a stronger version of the soundness theorem for L, there is a universal
effective strategy that accomplishes every task provable in L, i.e. every task
that is in principle possible to accomplish.

The main results of the current paper were announced in [11]. A general
framework for our approach was first outlined in [9].

Having said all this, it is time to get down to business — formal definitions
and proofs.

2 Syntax

We fix a set of expressions that we call primitive task letters, with each of which
is associated a natural number called its arity.

We also fix an infinite set C = {c0, c1, . . .} of constants and an infinite set
V = {v0, v1, . . .} of variables.

Constants are meant to represent elements of the universe of discourse. For
convenience, we are going to simply identify C with the universe of discourse.3

Requiring that C is infinite does not yield any loss of generality as we shall see
later (Fact 7.1).

We refer to elements of C ∪ V as terms.
For the considerations of compactness of definitions and proofs, we choose

a minimal set of basic operators in the language. All the operators not listed
in the following definition should be considered standard abbreviations known
from classical logic or explained in the Introduction.

Definition 2.1 Task formulas are elements of the smallest class of expressions
such that:

1. If P is an n-ary primitive task letter and t1, . . . , tn are terms, then P (t1, . . . , tn)
is a task formula;

2. ⊥ is a task formula;

3. if α and β are task formulas, then so is (α)→(β);

4. if α and β are task formulas, then so is (α)u(β);

5. if α is a task formula and x is a variable, then ∀x(α) is a task formula;

6. if α is a task formula and x is a variable, then ux(α) is a task formula.

We will usually use the one-word names “task” or “formula” instead of “task
formula”. All the three terms should be considered synonyms.

3This is the author’s favorite approach, first employed in [10].

12



Throughout the paper lowercase Greek letters (except ε) will be used as
metavariables for tasks, the letters a and b as metavariables for constants, the
letters x and y as metavariables for variables, and the letter t as a metavariable
for terms.

Whenever this does not lead to ambiguity, we will omit some parentheses in
formulas by standard conventions.

An occurrence of a variable x in a formula is said to be free, if it is not in the
scope of ∀x or ux. Otherwise, the occurrence of x is bound. The occurrence
of x in ∀xα or uxα is considered bound even if α does not contain x so that x
only occurs in the subexpression ∀x or ux.

The adjectives “free” and “bound” can be extended to all terms by assuming
that an occurrence of a term that happens to be a constant is always free.

A formula α is said to be safe if there is no variable that has both a free
and a bound occurrence in it. As non-safe formulas can be easily converted
into equivalent safe formulas by renaming variables, from now on we restrict
our considerations to safe formulas only, and “formula” will always mean “safe
formula”.

A closed formula is a formula that has no free variables.
Where t1, . . . , tn, t′1, . . . , t′n are terms, we will use the expression

α(t1/t′1, . . . , tn/t
′
n)

to denote the result of replacing in α every free occurrence of ti (1 ≤ i ≤ n) by
t′i. When the terms t1, . . . , tn are fixed in the context, we can also simply write

α(t′1, . . . , t
′
n)

instead of α(t1/t′1, . . . , tn/t′n), as this is an established practice in the literature.
If x1, . . . , xn are all the distinct free variables of α and a1, . . . , an are con-

stants, then we say that α(x1/a1, . . . , xn/an) is an instance of α.
We call the operators u and u additive operators, or additives. The other

operators from Definition 2.1 will be referred to as classical operators.
An additive (sub)formula is a (sub)formula of the form αuβ or uxα. In the

former case we say that the additive formula is a u-formula, and in the latter
case we say that it is a u-formula.

The additive complexity of a formula is the number of occurrences of additives
in that formula.

A surface occurrence of a subformula in a formula is an occurrence that is
not in the scope of an additive operator.

We need some fixed way to refer to surface occurrences of subformulas. This
will be done using strings of the three letters, a (from “antecedent”), c (from
“consequent”) and q (from “quantifier”). We call this kind of strings occurrence
specifications. The empty string, denoted by ε, is one of the occurrence speci-
fications. Not every occurrence specification is valid for a given formula. If Γ
is a valid occurrence specification for α, then Γ(α) denotes the occurrence in α

13



specified by Γ, to which we can also refer as “the occurrence Γ in α”. Here is
a recursive definition of Γ(α), where ~r stands for any string over the alphabet
{a, c, q}:

• a~r is valid for α iff α = β→γ and ~r is valid for β, in which case a~r(α) =
~r(β);

• c~r is valid for α iff α = β→γ and ~r is valid for γ, in which case c~r(α) =
~r(γ);

• q~r is valid for α iff α = ∀xβ and ~r is valid for β, in which case q~r(α) =
~r(β);

• ε is always valid for α and ε(α) = α.

Example: Let

α = (⊥→∀xuyγ) → ∀x(uyγ→(δuθ)
)
.

Then acq(α) is the first occurrence of uyγ, cqa(α) is the second occurrence
of uyγ, cqc(α) is the occurrence of δuθ, and aq or cqcc are invalid for α.

An occurrence specification Γ is said to be positive, if Γ contains an even
(possibly zero) number of a; otherwise it is negative. In other words, Γ is positive
iff it specifies an occurrence that is in the antecedents of an even number of
occurrences of →.

If Γ is a valid occurrence specification for α and γ is any formula, we call
the pair Γ/γ a replacement for α.

If E = Γ/γ is a replacement for α, we will use the expression

α(E)

or
α(Γ/γ)

to denote the result of replacing in α the occurrence Γ by γ.

Definition 2.2
a) An elementary action for α is a replacement Γ/γ for α such that Γ is

negative and one of the following conditions holds:

• Γ(α) = β0uβ1 and γ = β0 or γ = β1; in this case we say that Γ/γ is an
elementary u-action for α.

• Γ(α) = uxβ and γ = β(x/a) for some constant a; in this case we say that
Γ/γ is an elementary u-action for α.

b) An elementary (u- or u-) reaction for α is defined in the same way, only
Γ here should be positive rather than negative.

14



An elementary action means an elementary request made by the slave, and
an elementary reaction means an elementary request made by the master.

Definition 2.3 A (simply) action for α is a sequence X = 〈E1, . . . , En〉 such
that E1 is an elementary action for α0 = α, E2 is an elementary action for
α1 = α0(E1), E3 is an elementary action for α2 = α1(E2), ...

A (simply) reaction for α is defined in the same way, only E1, . . . , En here
should be elementary reactions rather than actions.

When X = 〈E1, . . . , En〉 is an action or a reaction for α and α0 = α, α1 =
α0(E1), α2 = α1(E2), ..., αn = αn−1(En), we will use the expression

α(X)

or
α(〈E1, . . . , En〉)

to denote αn, i.e. the result of consecutively making the replacementsE1, . . . , En

in α. If here X is the empty action or reaction 〈〉, then we assume α(X) = α.

By abuse of terminology, we will also say that a formula β is an action for
α, if β = α(X) for some action X for α; we say that such an action is proper,
if X 6= 〈〉. Similarly, we will say that a formula β is an elementary (u- or u-)
action for α, if β = α(X) for some elementary (u- or u-) action X for α. The
same terminological convention applies to reactions and elementary reactions.

The following fact can be easily observed:

Fact 2.4 Assume X is an action and Y is a reaction for α. Then X is also an
action for α(Y ), and Y is also a reaction for α(X); moreover,

(
α(X)

)
(Y ) =

(
α(Y )

)
(X).

When X is an action (or a simple action) and Y is a reaction (or a simple
reaction) for α, we will usually use the notation

α(X,Y )

to mean the same as the less symmetric-looking notation
(
α(X)

)
(Y ).

If β = α(X,Y ) for some action X and reaction Y for α, we say that β is a
development of α; if here β 6= α, i.e. X 6= 〈〉 or Y 6= 〈〉, then β is said to be a
proper development of α.

Definition 2.5 A realization of α is a sequence

〈α0, . . . , αm〉

such that α0 = α and for every i with 0 ≤ i < m, αi+1 is a proper development
of αi.

15



When we simply say “a realization”, we mean the realization of α for some
arbitrary formula α.

Definition 2.6 An action strategy is an effective partial function f that assigns
to every realization, for which it is defined, an action for the last formula of the
realization.

Thus, an action strategy is a procedure that looks at the current state of the
task, together with the history of the task, and decides what action to perform
(what requests to make) in it.

By abuse of notation, when an action strategy f is undefined for a realization
R, we write f(R) = 〈〉.

Definition 2.7 Let f be an action strategy. A realization of α with f is a
realization R = 〈α0, . . . , αm〉 of α such that f(R) = 〈〉 and for every i with
0 ≤ i < m, if X = f〈α0, . . . , αi〉, we have αi+1 = αi(X,Y ) for some reaction Y
for αi.

Intuitively, this is how a realization of α0 with response strategy f is pro-
duced: f (the slave) reads the current input 〈α0, . . . , αi〉 (initially i = 0) and
starts thinking what action (series of elementary actions) to make for its last
formula; while f is thinking, master can make zero, one or more reactions for
α, the combination of whose is still called a (one) reaction. Once f has come
to a decision, the action it finds is combined with master’s reaction(s), applied
to the last formula of the input, and the resulting formula αi+1 is added to the
input as long as it is a proper development of αi. This way we get a new input
(even if it is not different from the previous one), which will again be processed
in the same way, and so on.

Thus, our definition allows multiple (non-simple) actions and reactions at
every step, as well as simultaneous actions and reactions. The only motivation
for this is to get a perfect symmetry between master and slave. An alternative,
less symmetric-looking approach, would be to alternate exclusive accesses to
the input between master and slave, with or without requiring for requests and
responses to be simple. Both variants, as well as any other reasonable variations
of the protocol, would produce the same class of valid (accomplishable) tasks.
This sort of robustness indicates how natural the semantics is. The situation can
be compared with the situation with different sorts of Turing machines and other
models of computation that all lead to the same class of computable functions,
the phenomenon that serves as a major argument in favor of the Church-Turing
thesis.

3 Semantics

A closed non-logical atom is P (a1, . . . , an), where P is an n-ary primitive task
letter and each ai is a constant.

16



Definition 3.1 An eventual situation is a total function s that assigns to every
closed non-logical atom one of the values {1,0}. 1 corresponds to the intuitive
value accomplished, and 0 corresponds to the value failed.

This function is extended to all closed formulas as follows:

1. s(⊥) = 0.

2. s(α→β) =
{

0 if s(α) = 1 and s(β) = 0;
1 otherwise.

3. s(∀xα) =
{

1 if s
(
α(x/a)

)
= 1 for every constant a;

0 otherwise.

4. s(αuβ) = 1.

5. s(uxα) = 1.

A task is said to be primitive, if its additive complexity is 0, i.e. it does not
contain any additive operators.

The primitivization of α, denoted by α, is the result of replacing in α all
(surface) occurrences of all additive subformulas by >, which abbreviates ⊥→⊥.

The following fact immediately follows from Definition 3.1:

Fact 3.2 Assume α is a closed formula. Then, for every eventual situation s,
we have s(α) = s(α).

An eventual situation s can be thought of as a classical model, where the
universe of discourse is C (the set of all constants), and where an n-ary primitive
task letter P is interpreted as the n-ary predicate that is true for the n-tuple
a1, . . . , an of constants if and only if s

(
P (a1, . . . , an)

)
= 1.

When restricted to primitive formulas, Definition 3.1 is virtually the same as
the classical definition of truth in model s. So that, for every primitive formula
α, we have s(α) = 1 iff α is true in s in the classical sense. In view of the
soundness and completeness of classical first order predicate calculus, we then
have:

Fact 3.3 A primitive formula α is provable in classical first order logic iff for
every eventual situation s, we have s(α) = 1.

Observe that development preserves the (→,∀)-structure of the formula. I.e.,
a development of α→β always has the form α′→β′, where α′ and β′ are devel-
opments of α and β, respectively. Similarly, a development of ∀xα always has
the form ∀xα′, where α′ is a development of α.

It follows that if an occurrence specification is valid for a formula, it is also
valid for any development of that formula.

Assume R = 〈α0, . . . , αn〉 is a realization of α0 and Γ is a valid occurrence
specification for α0. Then the projection of R on Γ, denoted by Γ(R), is the

17



result of deleting in 〈Γ(α0), . . . ,Γ(αn)〉 every formula that is a duplicate of its
predecessor in the sequence. It is obvious that Γ(R) is a realization of Γ(α0).

We also extend the notation α(t/t′) to realizations: If R is a realization and
t, t′ are terms, R(t/t′) denotes the result of replacing all free occurrences of t by
t′ in every formula of R.

Definition 3.4 We say that a realization R = 〈α0, . . . , αm〉 of a closed formula
α0 is successful with respect to an eventual situation s, if one of the following
conditions holds:

• α0 is atomic (which implies m = 0) and s(α0) = 1;

• α0 = β→γ and c(R) is successful with respect to s whenever a(R) is so;

• α0 = ∀xβ and, for every constant a,
(
q(R)

)
(x/a) is successful with respect

to s;

• α0 is an additive formula and either m = 0 or m ≥ 1 and 〈α1, . . . , αm〉 is
successful with respect to s.

This definition formalizes the intuition on accomplishing a task that was de-
scribed in the Introduction. In the context of an actual realization 〈α0, . . . , αm〉,
the task α0 should be considered accomplished if the realization is successful
with respect to the (actual) eventual situation. In particular, an atomic task
is accomplished iff it has the value 1 in the eventual situation. The task β→γ
is accomplished iff γ (the projection of the realization on the consequent) is
accomplished as long as β (the projection on the antecedent) is accomplished.
The task α0 of the form βuγ or uxβ is accomplished iff either there was no re-
quest specifying which particular subtask implied by α0 should be accomplished
(m = 0), or there was such a request (m ≥ 1) and the requested subtask was
accomplished. In particular, this subtask is α1, which would be either β or γ if
α0 = βuγ, and would be β(a) if α0 = uxβ(x).

As for ∀xβ(x), the Introduction did not contain very clear explanation of
what it means to accomplish this task. It was only mentioned that accom-
plishing ∀xβ(x) means accomplishing β(x) “for all particular values of x”. A
possible interpretation of this statement could be that the meaning of ∀xβ(x) is
the same as the meaning of β(c0)∧β(c1)∧ . . . (all constants ci). I have reserved a
different symbol, ∧, for this version of interpretation of “for all”. The semantics
of ∧xβ(x) will be discussed in more detail in Section 9. As to ∀xβ(x), Defini-
tion 3.4 implies a different intuition for it: Accomplishing ∀xβ(x) means having
β(x) accomplished for any possible particular value of x, without knowing this
particular value. The slave should act in a way that guarantees that β(x) is
accomplished no matter what the value of x is. Thus, unlike ∧xβ(x) which
produces infinitely many subtasks β(c0), β(c1), . . . for the slave to accomplish
simultaneously, ∀xβ(x) only produces one task. In this respect, ∀xβ(x) is sim-
ilar to uxβ(x) which, too, signifies only one task for the slave to accomplish.

18



The difference between uxβ(x) and ∀xβ(x) is that in the former the slave is
explicitly told for which particular value of x it has to accomplish β(x), while
in the latter this value remains unspecified.

This operator is useful in modelling “black box” type of problems: there is
an object x in the black box and the agent needs to accomplish a certain task
involving this object without knowing what particular object it is.

Example: The telephone memory (black box) stores the number (object in
the box) last dialed from this phone; the agent, who does not happen to know
the value of that number, still can accomplish the task of dialing this number
by hitting the “redial” button.

Lemma 3.5 A realization of a closed task is successful with respect to an even-
tual situation s if and only if s assigns the value 1 to the last formula of the
realization.

PROOF Assume R is a realization of a closed task α and s is an eventual
situation. Below “successful” means “successful in s”.

We use induction on the complexity of α.
If α is atomic, then, by Definition 3.4, R is successful with respect to s iff

s(α) = 1. It remains to notice that R = 〈α〉, so that α is (the first and) the last
formula of R.

Assume α = β0→γ0. Then R has the form 〈β0→γ0, . . . , βm→γm〉. Therefore
βm is the last formula of a(R) as the latter is nothing but 〈β0 . . . βm〉 with
duplicate formulas removed. Similarly, γm is the last formula of c(R). a(R) and
c(R) are realizations of β0 and γ0, respectively. The complexities of β0 and γ0

are lower than that of α. Hence, by the induction hypothesis, a(R) is successful
iff s(βm) = 1, and c(R) is successful iff s(γm) = 1. Therefore, in view of the
clause 2 of Definition 3.1, s(βm→γm) = 1 iff a(R) is not successful or c(R) is
successful. But, by Definition 3.4, this is the case if and only if R is successful.
Thus, R is successful iff s assigns 1 to its last formula βm→γm.

Assume now α = ∀xβ0. Then R has the form 〈∀xβ0, . . . ,∀xβm〉. Therefore,
for a constant a, βm(x/a) is the last formula of

(
q(R)

)
(x/a). The latter is a

realization of β0(x/a), whose complexity is lower than that of α. Hence, by the
induction hypothesis,

(
q(R)

)
(x/a) is successful iff s

(
βm(x/a)

)
= 1. Therefore,

in view of the clause 3 of Definition 3.1, s(∀xβm) = 1 iff
(
q(R)

)
(x/a) is successful

for every constant a. But, by Definition 3.4, this is the case if and only if R is
successful. Thus, again, R is successful iff s assigns 1 to its last formula ∀xβm.

Finally, assume α is βuγ or uxβ. If R = 〈α〉, then, by Definition 3.4, R is
successful and, by Definition 3.1, s(α) = 1. If R = 〈α, α1, . . . , αm〉 (m ≥ 1), then
α1 must be a proper development of α and hence have a lower complexity than
α does. Therefore, by the induction hypothesis, the realization 〈α1, . . . , αm〉 of
α1 is successful iff s(αm) = 1. By Definition 3.4, R is successful iff 〈α1, . . . , αm〉
is so. Thus, R is successful iff s(αm) = 1. 2

19



The reader may ask why I have not chosen Lemma 3.5 as a definition of
“successful” instead of Definition 3.4. There are two reasons: First of all, it is
Definition 3.4 rather than Lemma 3.5 that captures the task intuition described
in the Introduction. Secondly, the portability of the definition would be lost.
The point is that Definition 3.4 has natural generalizations for certain more
expressive languages, — languages where realizations may no longer be finite
which would make Lemma 3.5 inapplicable. Some languages of this sort are
described in Section 9.

Definition 3.6 We say that an action strategy f accomplishes α if, for every
instance α∗ of α and every eventual situation s, every realization of α∗ with f
is successful with respect to s.

If such an action strategy f exists, we say that α is accomplishable.

One can verify that accomplishability of a task α containing free variables is
equivalent to accomplishability of the u-closure of α rather than its ∀-closure.
That is, if x1, . . . , xn are all the free variables of α, then α is accomplishable iff
ux1 . . .uxnα is accomplishable.

Definition 3.6 is a formalization of the intuitive meaning of accomplishability
as existence of an agent who has an effective action strategy that guarantees that
the task will be accomplished no matter what the environment’s reactions are
and what the eventual situation is. This agent has no physical or informational
resources beyond those implied by the task.

There is one important point worth noticing. Technically, the definition of
accomplishability is similar to the classical definition of validity (tautology):
they both involve universal quantification over situations/models. In classical
logic, however, the point of departure is truth rather than validity, and validity
is interesting only as long as it means truth in every particular model. This
is so because every application of classical logic deals with one fixed model,
and what has practical significance is whether a given fact is true in this par-
ticular model rather than in every possible model. As for the logic of tasks,
the situation with it is different. Here the central semantical concept in its own
rights is accomplishability rather than (a counterpart of) truth. Speaking about
one particular actual eventual situation does not make practical sense — this
situation is not initially determined, and which one of the possible situations
becomes “eventual” may depend on the actions of the agent. The job of the
agent is to influence the course of events in a way that narrows down the set of
all potential eventual situations to favorable ones.

And even if some of the primitive task letters of the language stand for
facts (tasks with predetermined semantical values, — see the Introduction), so
that the eventual situation is partially predetermined, it is still accomplisha-
bility rather than truth that is of primary significance. Because what matters
for successful planning (the main practical application of the logic of tasks) is
not whether the semantical values of primitive tasks are predetermined or not,

20



but whether and how much the agent knows about those values. The coolant
problem discussed in the Introduction is a good demonstration of this point.

4 Logic L

The logic L that we are going to define in this section, is intended to axiomatize
the set of accomplishable formulas. Its soundness and completeness with respect
to accomplishability will be proven in later sections.

We will say that the variable vi is smaller than the variable vj , if i < j.
Throughout the paper we will be using the expression

xα

to denote the smallest variable that has no (free or bound) occurrence in α.
We will also be using the expression

Freeterms(α)

for the set of all terms (variables or constants) that have a free occurrence in α.

Definition 4.1
a) An elementary quasiaction for α is a replacement Γ/γ for α such that Γ

is negative and one of the following conditions holds:

1. Γ(α) = β0uβ1 and γ = β0 or γ = β1. In this case we say that Γ/γ is an
elementary u-quasiaction for α.

2. Γ(α) = uxβ and γ = β(x/t), where t ∈ Freeterms(α) or t = xα. In this
case we say that Γ/γ is an elementary u-quasiaction for α.

b) An elementary quasireaction for α is a replacement Γ/γ for α such that
Γ is positive and one of the following conditions holds:

1. Γ(α) = β0uβ1 and γ = β0 or γ = β1. In this case we say that Γ/γ is an
elementary u-quasireaction for α.

2. Γ(α) = uxβ and γ = β(x/xα). In this case we say that Γ/γ is an
elementary u-quasireaction for α.

Note the similarity and the difference between elementary action (reaction)
and elementary quasiaction (quasireaction). At the propositional level there is
no difference. The difference shows up when we deal with formulas containing
u. Every formula only has a finite number of elementary quasiactions or quasi-
reactions, while the number of elementary actions or reactions for a formula can
be infinite. Notice also that Definition 4.1 no longer enjoys the perfect symmetry
of Definition 2.2 between elementary actions and elementary reactions.

Now we are ready to define logic L.

21



Definition 4.2 of LOGIC L

• The axioms are all the primitive formulas provable in classical first order
logic.

• The rules of inference are:

Rule A:
π
α

,

where π is an elementary quasiaction for α;

Rule R:
α, π1, . . . , πe

α
,

where e ≥ 1 and π1, . . . , πe are all the elementary quasireactions for α.

We adopt the linear rather than tree-like version of proofs: L ` α (“α is
provable in L”) means that there is a finite sequence of formulas ending with α,
where each formula is either an axiom, or follows by one of the rules of inference
from some earlier formulas in the sequence. The number of formulas in such a
sequence is called the length of the proof.

We use the expression
L `l α

to say that α has a proof in L whose length is at most l.

5 The decidability of the ∀-free fragment of L

Let L− be L restricted to formulas not containing ∀. L− is more than the
propositional fragment of L, because its language still has u.

Theorem 5.1
1. L is semidecidable.
2. L− is decidable. In particular, it is decidable in polynomial space.

PROOF The clause 1 is obvious in view of the semidecidability of classical
first order logic and the way L is defined.

As for the clause 2, here is an informal description of a decision procedure
for L− ` α, together with a proof, by induction on the additive complexity of
α, that the procedure takes a finite time.

Given a formula α,
a) If α is primitive, then the rules A and R are not applicable to α, and the

only way α can be derived in L− is if it is an axiom of L−, i.e. if it is provable
in classical logic. Since α does not contain quantifiers, it is provable in classical
logic if and only if it is a classical propositional tautology. So, check whether
α is a tautology, and if it is, output “yes”, otherwise output “no”. In view of

22



the decidability of classical propositional logic, this step can be completed in a
finite time.

b) If α is not primitive, then the only way it can be proved in L− is if either
one of the elementary quasiactions for it is provable, or all of the elementary
quasireactions for it, together with its primitivization, are provable in L−. The
primitivization is provable iff it is a tautology, so its provability can be checked
in a finite time. Also, as we noted, the number all the elementary quasiactions
and quasireactions for α is finite. So, check each of them for provability in
L−. If it turns out that either one of the elementary quasiactions, or all of the
elementary quasireactions together with the primitivization of α are provable
in L−, then output “yes”, otherwise output “no”. The additive complexities
of those elementary quasiactions and quasireactions are lower than the additive
complexity of α and, by the induction hypothesis, their provability in L can be
checked in a finite time. So that this step, too, can be completed in a finite
time.

A more careful analysis of the above procedure could convince us that the
procedure takes (at most) polynomial space. 2

6 The soundness of L

Lemma 6.1 For any terms t1, . . . , tn, t′1, . . . , t
′
n, where t′1, . . . , t

′
n have no bound

occurrences in α,

if L `l α, then L `l α(t1/t′1, . . . , tn/t′n).

PROOF
Assume L `l α. Let

α′ = α(t1/t′1, . . . , tn/t
′
n).

We use induction on l to show that L `l α
′.

If l=1, i.e. α is an axiom, then α is provable in classical logic. The latter is
known to be closed under free substitution for variables and constants, so clas-
sical logic proves α(t1/t′1, . . . , tn/t

′
n). Consequently, L `1 α(t1/t′1, . . . , tn/t

′
n).

Suppose α is obtained from π by the A-rule. Then L `l−1 π, whence, by the
induction hypothesis, L `l−1 π

′, where

π′ = π(xα/xα′ , t1/t
′
1, . . . , tn/t

′
n).

It is easy to verify that since π is an elementary quasiaction for α, π′ is an
elementary quasiaction for α′. Therefore for α′, which follows from π′ by the
A-rule, we have L `l α

′.
Finally, suppose α is obtained from α, π1, . . . , πe by the R-rule.

23



By the induction hypothesis, for each i with 1 ≤ i ≤ e, the formula

π′
i = πi(xα/xα′ , t1/t

′
1, . . . , tn/t

′
n)

has a proof of the same length as πi does. One can verify that

π′
1, . . . , π

′
e

are all the quasireactions for α′, and α(t1/t′1, . . . , tn/t
′
n) is the primitivization

of α′. So that α′ follows from

α(t1/t′1, . . . , tn/t
′
n), π′

1, . . . , π
′
e

by the R-rule. Applying the induction hypothesis to the premises of this rule,
we conclude that α′ has a proof of the same length as α does. 2

Lemma 6.2 If L `l α and ρ is an elementary quasireaction for α, then L `l−1 ρ.

PROOF We use induction on l.
If l = 1, i.e. α is an axiom, then α has no elementary quasireactions and we

are done.
Assume now l > 1 and

ρ = α(∆/δ)

is an elementary quasireaction for α.
If α is obtained by the R-rule from α, π1, . . . , πe, then ρ = πi for one of the i

with 1 ≤ i ≤ e. Each of these πi has a proof of length ≤ (l − 1), and so does ρ.
Suppose now α is obtained by the A-rule from an elementary quasiaction

π = α(Γ/γ)

for α.
To show that ρ has a proof of length ≤ (l−1), we need to consider four cases,

depending on whether Γ/γ and ∆/δ are elementary u- or u-quasiaction/qua-
sireaction.

Below we will be using the following readability-improving notational con-
vention: for any formulas φ and ψ,

α(Γ/φ, ∆/ψ)

will be abbreviated as
α[φ, ψ].

Case 1: Γ(α) = ξ0uξ1 and ∆(α) = η0uη1, with γ = ξi and δ = ηj (i, j ∈
{0, 1}). Thus we have:

α = α[ξ0uξ1, η0uη1],

24



π = α[ξi, η0uη1]

and
ρ = α[ξ0uξ1, ηj ].

Let
θ = α[ξi, ηj ].

Obviously θ is an elementary quasireaction for π and an elementary quasiac-
tion for ρ. That θ is an elementary quasireaction for π implies, by the induction
hypothesis, that θ has a shorter proof than π does, so that, since L `l−1 π, we
have L `l−2 θ. Consequently, since ρ can be derived from θ by the A-rule, we
have L `l−1 ρ.

Case 2: Γ(α) = ξ0uξ1 with γ = ξi (i ∈ {0, 1}), and ∆(α) = uyη with
δ = η(y/xα). So that we have:

α = α[ξ0uξ1, uyη(y)],
π = α[ξi, uyη(y)]

and
ρ = α[ξ0uξ1, η(xα)].

Let
θ = α[ξi, η(xα)]

and
θ′ = α[ξi, η(xπ)].

Obviously θ′ is an elementary quasireaction for π and hence, by the induction
hypothesis (as L `l−1 π), we have L `l−2 θ

′. Consequently, by Lemma 6.1,

L `l−2 θ
′(xπ/xα).

But observe that θ′(xπ/xα) = θ. Thus, L `l−2 θ. It remains to notice that θ is
an elementary quasiaction for ρ; applying the A-rule to θ, we then get L `l−1 ρ.

Case 3: Γ(α) = uxξ with γ = ξ(x/t), where t = xα or t ∈ Freeterms(α),
and ∆(α) = η0uη1 with δ = ηj (j ∈ {0, 1}), so that we have:

α = α[uxξ(x), η0uη1],
π = α[ξ(t), η0uη1]

and
ρ = α[uxξ(x), ηj ].

Let
θ = α[ξ(t), ηj)].

25



Obviously θ is an elementary quasireaction for π, so that, by the induction
hypothesis (as L `l−1 π), L `l−2 θ. If t ∈ Freeterms(ρ), then clearly θ is also
an elementary quasiaction for ρ, whence, by the A-rule, we get L `l−1 ρ.

Suppose now t 6∈ Freeterms(ρ). Let then

θ′ = α[ξ(xρ), ηj ].

Observe that t has no free or bound occurrences in θ′ (otherwise t would
be either in Freeterms(ρ), or among the bound variables of α). Therefore it is
easy to see that θ′ = θ(t/xρ). Since we have L `l−2 θ, Lemma 6.1 implies that
L `l−2 θ

′. But θ′ is an elementary quasireaction for ρ so that the latter follows
from the former by the A-rule. Consequently, L `l−1 ρ.

Case 4: Γ(α) = uxξ with γ = ξ(x/t), where t = xα or t ∈ Freeterms(α),
and ∆(α) = uyη, with δ = η(y/xα), so that we have:

α = α[uxξ(x), uyη(y)],
π = α[ξ(t), uyη(y)]

and
ρ = α[uxξ(x), η(xα)].

Let
θ = α[ξ(t), η(xπ)].

θ is an elementary quasireaction for π and, as L `l−1 π, by the induction
hypothesis, we have

L `l−2 θ. (1)

We need to consider two subcases:
Subcase 4.1: t ∈ Freeterms(α).
Then clearly we also have t ∈ Freeterms(ρ) and therefore the formula θ′

defined by
θ′ = α[ξ(t), η(xα)]

is an elementary quasiaction for ρ. One can verify that θ′ = θ(xπ/xα) which,
by Lemma 6.1 together with (1), implies L `l−2 θ

′. Hence, as ρ can be obtained
from θ′ by the A-rule, we have L `l−1 ρ.

Subcase 4.2: t = xα.
Let then

θ′ = α[ξ(xρ), η(xα)].

One can verify that θ′ = θ(t/xρ, xπ/xα). This, by Lemma 6.1 together with (1),
implies that L `l−2 θ

′. But θ′ is an elementary quasiaction for ρ. Remembering
about the A-rule, we can conclude that L `l−1 ρ. 2

26



We say that β is a (simply) quasiaction for α if β = α, or β is an elementary
quasiaction for α, or β is an elementary quasiaction for an elementary quasiac-
tion for α, or ... β is said to be a proper quasiaction for α, if β is a quasiaction
for α and β 6= α.

Similarly, quasireaction is the transitive and reflexive closure of the relation
“elementary quasireaction”, and proper quasireaction is the transitive closure of
that relation.

It is easy to see that just as this is the case with elementary quasiactions and
elementary quasireactions, the number of all quasiactions and quasireactions for
any given formula is finite.

Lemma 6.3 If β∗ is a reaction (resp. proper reaction) for an instance of α,
then β∗ is an instance of a quasireaction (resp. proper quasireaction) for α.

PROOF Let α∗ be an instance of α and β∗ = α∗(Y ) be a reaction for α∗.
We prove the lemma by induction on the length of Y .
Basis: If Y = 〈〉, i.e. the reaction Y is not proper, then β∗ = α∗. As α is a

(non-proper) quasireaction for itself and α∗ is an instance of it, we are done.
Inductive step: Assume Y = 〈E1, . . . , Ek,Γ/γ∗〉 (k ≥ 0). Then Y is a proper

reaction and α∗(Y ) = θ∗(Γ/γ∗), where θ∗ = α∗(〈E1, . . . , Ek〉). By the induction
hypothesis, θ∗ is an instance of a quasireaction θ for α. So, it suffices to show
that θ∗(Γ/γ∗) is an instance of an elementary quasireaction for θ and hence of
a proper quasireaction for α.

There are two cases to consider:
Case 1: Γ/γ∗ is an elementary u-reaction for α∗, i.e. Γ(α∗) = β∗

0uβ∗
1 and

γ∗ is one of the β∗
i , i ∈ {0, 1}. Fix this i.

Since Γ(θ∗) = β∗
0uβ∗

1 and θ∗ is an instance of θ, we must have Γ(θ) = β0uβ1,
where β∗

0uβ∗
1 is an instance of β0uβ1. Then Γ/βi is an elementary quasireaction

for θ, and obviously θ∗(Γ/β∗
i ) is an instance of θ(Γ/βi).

Case 2: Γ/γ∗ is an elementary u-reaction for α∗, i.e. Γ(α∗) = uyβ∗ and
γ∗ is β∗(y/b) for some constant b. Fix this constant.

Since Γ(θ∗) = uyβ∗ and θ∗ is an instance of θ, we must have Γ(θ) = uyβ,
where β∗ is an instance of β. Then Γ/β(y/xθ) is an elementary quasireaction
for θ, and obviously θ∗

(
Γ/β∗(x/b)

)
is an instance of θ

(
Γ/β(x/xθ)

)
. 2

Theorem 6.4 (Soundness of L) If L ` α, then α is accomplishable.

PROOF Assume L `l α. Let

x1, . . . , xn

be all the free variables of α.
Below we define an action strategy f and show, by induction on l, that it

accomplishes (any instance of) α.

27



Case 1: Assume α is an axiom, i.e. l = 1. This implies that α is a primitive
formula provable in classical logic, and so are all instances of α.

Let in this case f be the action strategy that assigns 〈〉 to every realiza-
tion. f can be called the “idle strategy”. Consider an arbitrary instance
α∗ = α(x1/a1, . . . , xn/an) of α. As α∗ is primitive, there are no nonempty re-
actions for it, and 〈α∗〉 is the only possible realization of α∗ with f . Therefore,
in view of Lemma 3.5, 〈α∗〉 is successful with respect to an eventual situation s
iff s(α∗) = 1. But since α∗ is provable in classical logic, by Fact 3.3, for every
eventual situation s, we have s(α∗) = 1. Thus, f accomplishes every instance α∗

of α, i.e. f accomplishes α. Notice that in fact any action strategy accomplishes
α.

Case 2: Assume α follows from π by the A-rule. The proof of π is shorter
than l and, by Lemma 6.2, every quasireaction for π also has a proof shorter than
l. Let β1, . . . , βk be all the quasireactions for π. By the induction hypothesis,
there are action strategies

f1, . . . , fk

that accomplish β1, . . . , βk, respectively.
Since α follows from π by the A-rule, we must have π = α(Γ/γ) for some

elementary quasiaction Γ/γ for α. There are two subcases to consider:
Subcase 2.1: Assume Γ(α) = ξ0uξ1 and γ = ξi for one of the i ∈ {0, 1}. Fix

this i. Let then f be the function that, for every instnce

α∗ = α(x1/a1, . . . , xn/an)

of α, acts as follows:

• f〈α∗〉 = X , where X = 〈Γ / ξi(x1/a1/ . . . , xn/an)〉;

• For any realization 〈α∗, α1, . . . , αm〉 with m ≥ 1 where α1 is an instance
of one of the βj (1 ≤ j ≤ k), f returns the same value as fj does for the
realization 〈α1, . . . , αm〉. If here there are more than one such βj , the one
with the smallest j is selected.

Observe that X is indeed an action for α∗ and α∗(X) is an instance of π. In
particular, α∗(X) = π(x1/a1, . . . , xn/an).

We claim that f accomplishes α. To see this, consider an arbitrary instance
α∗ = α(x1/a1, . . . , xn/an) of α. Since X is nonempty, every realization of α∗

with f has the form 〈α∗, α∗(X,Y ), θ1, . . . , θm〉 (m ≥ 0), where Y is a reaction
for α∗ and hence for α∗(X). As we noted, the latter is an instance of π. There-
fore, by Lemma 6.3, α∗(X,Y ) is an instance of a quasireaction for π. Remember
that β1, . . . , βk are all the quasireactions for π, so α∗(X,Y ) must be an instance
of one of them. Let j be the smallest number such that α∗(X,Y ) is an instance
of βj . Thus, the realization of α∗ has the form 〈α∗, β∗

j , θ1, . . . , θm〉, where β∗
j

is an instance of βj . From the way f is defined, it is easy to see that then

28



〈β∗
j , θ1, . . . , θm〉 is a realization of β∗

j with the action strategy fj . It was our as-
sumption that the latter accomplishes βj and hence β∗

j . Therefore, by Lemma
3.5, the last formula of 〈β∗

j , θ1, . . . , θm〉 has the value 1 for every eventual situ-
ation s. But the last formula of 〈β∗

j , θ1, . . . , θm〉 is the same as the last formula
of 〈α∗, α∗(X,Y ), θ1, . . . , θm〉, which implies that the latter is successful with re-
spect to every eventual situation s. Thus, every realization of any instance α∗

of α with f is successful with respect to every eventual situation, which, by
definition, means that f accomplishes α.

Subcase 2.2: Assume Γ(α) = uyδ and γ = δ(y/t), where either t = xα or
t ∈ Freeterms(α).

Then we define f as the function that, for every instnce

α∗ = α(x1/a1, . . . , xn/an)

of α, acts as follows:

• f〈α∗〉 = X , where X = 〈Γ / δ(y/b, x1/a1, . . . , xn/an)〉, where

b =





t if t is a constant
ai if t is xi for one of the 1 ≤ i ≤ n
the constant c0 if t = xα.

• For any realization 〈α∗, α1, . . . , αm〉 with m ≥ 1 where α1 is an instance
of one of the βj (1 ≤ j ≤ k), f returns the same value as fj does for the
realization 〈α1, . . . , αm〉. If here there are more than one such βj , the one
with the smallest j is selected.

Observe that X is indeed an action for α∗ and α∗(X) is an instance of π. In
particular, α∗(X) = π(y/b, x1/a1, . . . , xn/an).

We claim that f accomplishes α. The claim can be justified using the same
argument as the one used in the Subcase 2.1.

Case 3: α follows from α, π1, . . . , πe by the R-rule.
Let β1, . . . , βk be all the proper quasireactions for α (so that π1, . . . , πe are

among them). By Lemma 6.2, each of these formulas has a proof shorter than
l and hence, by the induction hypothesis, there are action strategies f1, . . . , fk

that accomplish β1, . . . , βk, respectively.
Let then f be the function that, for every instnce

α∗ = α(x1/a1, . . . , xn/an)

of α, acts as follows:

• f〈α∗〉 = 〈〉;

• For any realization 〈α∗, α1, . . . , αm〉 with m ≥ 1 where α1 is an instance
of one of the βj (1 ≤ j ≤ k), f returns the same value as fj does for the
realization 〈α1, . . . , αm〉. If here there are more than one such βj , the one
with the smallest j is selected.

29



We claim that f accomplishes α.
Indeed, consider an arbitrary instance

α∗ = α(x1/a1, . . . , xn/an)

of α, an arbitrary realization 〈α∗, θ1, . . . , θm〉 of α∗ and an arbitrary eventual
situation s. We need to show that 〈α∗, θ1, . . . , θm〉 is successful with respect to
s.

There are two subcases to consider:
Subcase 3.1: Assume m = 0. Then α∗ is the last formula of the real-

ization and, by Lemma 3.5, the realization is successful with respect to s
iff s(α∗) = 1. So, it suffices to show that s(α∗) = 1. But indeed, obvi-
ously α(x1/a1, . . . , xn/an) is the primitivization of α∗. And since α is prov-
able in classical logic, so is α(x1/a1, . . . , xn/an). Then, by Fact 3.3, we have
s
(
α(x1/a1, . . . , xn/an)

)
= 1 whence, by Fact 3.2, s(α∗) = 1.

Subcase 3.2: Assume now m ≥ 1. Since f〈α∗〉 = 〈〉, θ1 must be a proper
reaction for α∗. Therefore, by Lemma 6.3, θ1 is an instance of a proper quasi-
reaction for α. As β1, . . . , βm are all the proper quasireactions for α, θ1 must
be an instance of one of them. Let j be the smallest number (1 ≤ j ≤ m) such
that θ1 is an instance of βj . Then it can be easily seen from the way f is defined
that 〈θ1, . . . , θm〉 is a realization of θ1 with the action strategy fj . It was our
assumption that the latter accomplishes βj and hence θ1. Therefore, by Lemma
3.5, s(θm) = 1. And since θm is also the last formula of 〈α∗, θ1, . . . , θm〉, this
realization is also successful with respect to s. 2

7 Stronger versions of the soundness theorem

As we remember, our assumption was that the set C of constants (and hence
the universe of discourse as we assumed that the latter is nothing but C) is
countably infinite. An analysis of the proof of Theorem 6.4 can reveal that the
only assumption about C we employed was that c0 is an element of C (Subcase
2.2). So that we have:

Fact 7.1 Theorem 6.4 remains valid for the case when the universe of discourse
(set of constants) has any nonzero finite cardinality.

The following theorem is a constructive version of the soundness theorem
for L:

Theorem 7.2 There is an effective procedure that takes as an input a proof of
a formula α in L and returns an action strategy that accomplishes α.

PROOF A straightforward analysis of the proof of Theorem 6.4. 2

The following theorem is even stronger:

30



Theorem 7.3 (The Universal Action Strategy Theorem) There is an
action strategy (“the universal action strategy”) that accomplishes every ac-
complishable task.

PROOF Here is how the universal action strategy works: Given a task α, it
starts looking for a proof of α in L. By the soundness theorem for L, such a
proof exists as long as α is accomplishable. And since L is semidecidable, there
is a procedure that finds such a proof sooner or later when it exists. So the uni-
versal action strategy may employ this procedure and, if α is accomplishable,
find an L-proof for it. Once a proof is found, the universal strategy employs the
procedure from Theorem 7.2 and constructs an action strategy f that accom-
plishes α. After that, it uses f to accomplish α. 2

8 The completeness of L

Let x1, . . . , xn be all the free variables of α. We say that an instance

α(x1/a1, . . . , xn/an)

of α is distinctive, if each ai is different from any constant occurring in α as well
as from any aj (1 ≤ j ≤ n) with j 6= i.

Lemma 8.1 If β is an action (resp. proper action) for a distinctive instance of
α, then β is a distinctive instance of a quasiaction (resp. proper quasiaction)
for α.

PROOF Assume x1, . . . , xn are all the free variables of α,

α∗ = α(x1/a1, . . . , xn/an)

is a distinctive instance of α and β∗ = α∗(X) is an action for α∗.
We prove the lemma by induction on the length of X .
Basis: If X = 〈〉, i.e. the action X is not proper, then β∗ = α∗. As α is a

(non-proper) quasiaction for itself and α∗ is an instance of it, we are done.
Inductive step: Assume X = 〈E1, . . . , Ek,Γ/γ∗〉 (k ≥ 0). Then X is a proper

action and α∗(X) = θ∗(Γ/γ∗), where θ∗ = α∗(〈E1, . . . , Ek〉). By the induction
hypothesis, θ∗ is a distinctive instance of a quasiaction θ for α. It suffices to
show that θ∗(Γ/γ∗) is a distinctive instance of an elementary quasiaction for θ
and hence of an proper quasiaction for α.

There are two cases to consider:
Case 1: Γ/γ∗ is an elementary u-action for α∗, i.e. Γ(α∗) = β∗

0uβ∗
1 and γ∗

is one of the β∗
i , i ∈ {0, 1}. Fix this i.

Since Γ(θ∗) = β∗
0uβ∗

1 and θ∗ is a distinctive instance of θ, we must have
Γ(θ) = β0uβ1, where β∗

0uβ∗
1 is a distinctive instance of β0uβ1. Then Γ/βi is an

31



elementary quasiaction for θ, and obviously θ∗(Γ/β∗
i ) is a distinctive instance

of θ(Γ/βi).
Case 2: Γ/γ∗ is an elementary u-action for α∗, i.e. Γ(α∗) = uyβ∗ and γ∗

is β∗(y/b) for some constant b. Fix this constant.
Since Γ(θ∗) = uyβ∗ and θ∗ is a distinctive instance of θ, we must have

Γ(θ) = uyβ, where β∗ is an instance of β. Let t be the term defined by

t =





b, if b occurs in θ
xi, if b = ai for one of the i with 1 ≤ i ≤ n
xθ otherwise

Then Γ/β(y/t) is an elementary quasiaction for θ, and obviously θ∗
(
Γ/β∗(y/b)

)

is a distinctive instance of θ
(
Γ/β(y/t)

)
. 2

Lemma 8.2 Assume f is an action strategy, α∗ is a closed formula, f〈α∗〉 = X ,
Y is a reaction for α∗ and α∗(X,Y ) is not accomplishable. Then f does not
accomplish α∗.

PROOF Indeed, assume the conditions of the lemma and assume, for a
contradiction, that f accomplishes α∗. Let f ′ be the action strategy such that
for any realization 〈α0, . . . , αk〉, f ′〈α0, . . . , αk〉 = f〈α∗, α0, . . . , αk〉.

Since α∗(X,Y ) is not accomplishable, there is a situation s and a realization

R = 〈α∗(X,Y ), α1, . . . , αk〉

of α∗(X,Y ) with strategy f ′ such that R is unsuccessful with respect to s. But
notice that then

〈α∗, α∗(X,Y ), α1, . . . , αk〉

is a realization of α∗ with strategy f . By Lemma 3.5, the latter is also unsuc-
cessful with respect to s because it has the same last formula as R does. 2

Lemma 8.3 If L 6` α and α∗ is a distinctive instance of α, then α∗ is not
accomplishable.

PROOF Assume L 6` α and α∗ is a distinctive instance of α.
We are going to show that α∗ is not accomplishable by induction on the

additive complexity of α.
Basis: Assume α is primitive. L 6` α implies that α is not provable in

classical logic, and therefore α∗ is not provable in classical logic, either (which
generally would not necessarily be the case if α∗ was not a distinctive instance of
α). In view of Fact 3.3, this means that here is a situation s such that s(α∗) = 0.
As α∗ is primitive, the only realization of it is 〈α∗〉 and, by Lemma 3.5, this
realization is not successful with respect to s. Thus, α∗ is not accomplishable.

32



Inductive step: Assume α is not primitive. Let f be an arbitrary action
strategy. We need to show that f does not accomplish α∗, i.e. there is a
realization of α∗ that is not successful with respect to some eventual situation.

There are two cases to consider:
Case 1: Assume α is not provable in classical logic. It is easy to see that then

α∗ is not provable in classical logic, either, because it is a distinctive instance
of α. Therefore, by Fact 3.3 and Fact 3.2, there is an eventual situation s such
that

s(α∗) = 0. (2)

If f〈α∗〉 = 〈〉, then 〈α∗〉 is a realization of α∗. It follows from (2) by Lemma
3.5 that this realization is not successful with respect to s.

Assume now f〈α∗〉 = X for some nonempty action X for α∗. Then, accord-
ing to Lemma 8.1, there is a proper quasiaction π for α such that α∗(X) is a
distinctive instance of π. L 6` π because otherwise, by the A-rule, we would
have L ` α. Also, the additive complexity of π lower than that of α. Therefore,
by the induction hypothesis, no distinctive instance of π is accomplishable. In
particular, α∗(X) is not accomplishable. Then, by Lemma 8.2 (with Y = 〈〉), f
does not accomplish α∗.

Case 2: Assume now α is provable in classical logic. Assume x1, . . . , xn are
all the distinct free variables of α, so that

α∗ = α(x1/a1, . . . , xn/an)

for some distinct constants a1, . . . , an.
Since α is not provable in L, there is an elementary quasireaction

π = α(Γ/γ)

for α that is not provable (otherwise α would be derivable by the R-rule). There
are two subcases to consider:

Subcase 2.1: Assume Γ(α) = ξ0uξ1 and γ = ξi for one of the i ∈ {0, 1}. Fix
this i.

Let Y be the reaction 〈Γ / ξi(x1/a1, . . . , xn/an)〉. Obviously α∗(Y ) is a
distinctive instance of π. Hence, by Lemma 8.1, every action for α∗(Y ) is a
distinctive instance of a quasiaction for π. Clearly a quasiaction for π can not
be provable, for otherwise, by the A-rule, π would be provable, too. Therefore,
by the induction hypothesis, we have:

No action for α∗(Y ) is accomplishable. (3)

Consider an arbitrary action strategy f . Let f〈α∗〉 = X . In view of Fact
2.4, X would also be an action for α∗(Y ). Therefore, by (3), α∗(X,Y ) is not
accomplishable. Then, by Lemma 8.2, f does not accomplish α∗.

Subcase 2.2: Assume Γ(α) = uyξ and γ = ξ(y/xα).

33



Let b be a constant that does not occur in α∗, and let Y be the reaction
〈Γ/δ(y/b, x1/a1, . . . , xn/an)〉. Observe that α∗(Y ) is a distinctive instance of π.
Further we can repeat the argument of the Subcase 2.1 to show that f does not
accomplish α∗. 2

The following theorem is an immediate consequence of Lemma 8.3:

Theorem 8.4 (Completeness of L) If α is accomplishable, then L ` α.

Remark 8.5 As we remember, the definition of action strategy assumes that
this strategy is effective. However, in the proof of Theorem 8.4, this assumption
was never used. Thus, L remains complete even if the requirement of effective-
ness of action strategies is removed and any strategies are allowed.

9 Beyond finite tasks

The basic connectives of the language of L do not form a complete set of op-
erators in any natural sense of expressive power, and L is open to interesting
extensions by means of adding new operators to its language.

The language defined in Section 2 only allows us to express finite tasks —
tasks that always have finite-length realizations, even though the number of
different realizations of a given task can be infinite. This sort of tasks are
sufficient for modelling situations with bounded physical resources, such as a
fixed number n of transcontinental missiles each of which can be used only once,
or n pieces of litmus paper or disposable pregnancy test devices. When n > 1,
such resources can be expressed with ∧-conjunctions of n identical conjuncts.

However, even though in real life all resources are limited and no task with
infinitely long realizations can really be accomplished, assuming the existence
of inexhaustible resources, such as an unlimited number of missiles or a reusable
version of litmus paper, is often a convenient abstraction. The need in having
means to express reusable resources is especially great when we deal with purely
informational tasks/resources. For example, a computer program that calculates
square roots carries out the task

uxty(y =
√
x),

but it does so an unlimited number of times rather than once. So that the task
carried out by such a program should be expresses by the infinite conjunction

uxty(y =
√
x) ∧ uxty(y =

√
x) ∧ uxty(y =

√
x) ∧ . . .

Obviously this task can produce infinitely long realizations — say, the master
can request finding the square root for 1, then for 2, then for 3, ... Such a
realization should be considered successful, if its (finite) projection on each of
the conjuncts is successful.

34



Of course we do not want to have infinitely long formulas in the language.
We can use the finite expression

↑α

to stand for α∧α∧ . . .. Applying an action or a reaction (or a combination of
those two) to the (sub)formula ↑α will result in replacing ↑α by (↑α)∧α′, where
α′ is the result of applying such an action/reaction to α in the sense of Section
2. This way, in the process of realization, the unchanging part ↑α can produce
more and more new “activated” conjuncts, but the number of those conjuncts
will remain finite at any particular stage, so that every formula in the realization
will be a finite expression.

This semantics makes the operator ↑ a counterpart of the exponential oper-
ator ! of linear logic.

In Section 3 we mentioned another operator, ∧, that also takes us beyond
finite tasks and that is, in fact, more expressive than ↑. As we remember, the
meaning of

∧xα(x)

is
α(c0) ∧ α(c1) ∧ . . .

In the Introduction we noted that the classical operators of our language corre-
spond to the multiplicative operators of linear logic. This statement, however,
should be restricted to propositional operators only. The classical quantifier ∀
has no counterpart in linear logic. What can be called a multiplicative quantifier
is not ∀ but ∧, for it is the same to the multiplicative conjunction ∧ as u is
to the additive conjunction u.

Just as this is the case with ↑α, at every stage of a realization, only a finite
number of conjuncts hidden in ∧xα(x) will be activated (be modified by proper
actions/reactions). However, as all these conjuncts are different, we need to keep
track of exactly which of them have been activated. For this reason, the syntax
for the operator ∧ should be

∧x 6∈ {a1, . . . , an}α(x)

(where a1, . . . , an are constants) rather than just ∧xα(x). The meaning of
this expression is the conjunction of all the formulas α(a) except those with
a ∈ {a1, . . . , an}. The expression ∧xα(x) could then be understood as an
abbreviation for ∧x 6∈ {}α(x).

Applying an action or a reaction (or a combination of those two) to the
hidden conjunct α(b), where b 6∈ {a1, . . . , αn}, will result in replacing

∧x 6∈ {a1, . . . , an}α(x)

by (
∧x 6∈ {b, a1, . . . , an}α(x)

)
∧ α′(b),

35



where α′(b) is the result of applying that action/reaction to α(b) in the sense of
Section 2.

Note that as long as x does not occur in α and the set of constants is infinite,
↑α is equivalent to ∧xα, so that there is no special need in having ↑ as a basic
operator together with ∧.

Problem: Is the (sound and complete) logic of tasks semidecidable when
∧ is added to its language?

References

[1] S.Abramsky and R.Jagadeesan, Games and full completeness for multiplica-
tive linear logic. Journal of Symbolic Logic 59 (1994), no. 2, pp.543-574.

[2] A.Blass, A game semantics for linear logic. Annals of Pure and Applied
Logic, v.56 (1992), pp. 183-220.

[3] W.Felscher, Dialogues, strategies and intuitionistic provability. Annals of
Pure and Applied Logic, v.28 (1985), no.3, pp.217-254.

[4] J.Y.Girard, Linear logic. Theoretical Computer Science, v.50-1 (1987), pp.
1-102.

[5] A.Haas, A syntactic theory of knowledge and action. Artificial Intelligence,
vol.28, no.3, 1986, pp.245-292.

[6] Game-Theoretical Semantics: Essays on Semantics by Hintikka, Carlson,
Peacocke, Rantala and Saarinen (edited by E.Saarinen). Dordrecht, Holland,
1979.

[7] G.Japaridze, A simple proof of arithmetical completeness for Π1-
conservativity logic. Notre Dame Journal of Formal Logic 35 (1994), No
3. pp.346-354.

[8] G.Japaridze, A constructive game semantics for the language of linear logic.
Annals of Pure and Applied Logic, v.85 (1997), pp. 87-156.

[9] G.Japaridze, The Logic of Resources and Tasks. Ph.D. Thesis. University of
Pennsylvania, Philadelphia, 1998. 145 pages.

[10] G.Japaridze, A decidable first order epistemic logic. Proceedings of the
Georgian Academy of Sciences N 1/2, 2000, pp.81-95.

[11] G.Japaridze, A task semantics for the language of linear logic. Bulletin of
the Georgian Academy of Sciences, v. 163 (2001), N 1, pp.5-7.

36



[12] K.Lorenz, Dialogspiele als semantische Grundlage von Logikkalkülen. Arch.
Math. Logik Grundlag., v.11 (1968), pp.32-55, 73-100.

[13] P.Lorenzen, Ein dialogisches Konstruktivitätskriterium. In: Infinitistic
Methods (PWN, Warsaw, 1959), pp.193-200.

[14] J.McCarthy and P.Hayes, Some philosophical problems from the standpoint
of Artificial Intelligence. In: B.Meltzer, ed., Machine Intelligence 4, 1969,
pp.463-502.

[15] R.Moore, A formal theory of knowledge and action. In: Hobbs and Moore,
eds., 1985.

[16] S.Russel and P.Norwig, Artificial Intelligence: A Modern Approach.
Prentice-Hall, 1995.

37


