Name:

CSC 1300 Spring 2014 Final Examination

150 minutes, 200 points. No devices with on/off switches, books, notes or other aids allowed. Villanova University academic integrity policy governs conduct of this exam.

For your use if/when needed:

How many ways	at most one	any number	exactly one
n labeled boxes?	per box	per box	per box
k labeled (ordered) balls	A:	E, F:	
	$\binom{n}{k}k! = n(n-1)$ $\dots (n-k+1)$	$(k_j \text{ balls unordered})$	
	$\dots (n-k+1)$	within box)	
	*	$\frac{k!}{k_1!k_2!\dots k_n!} = \binom{k}{k_1}$	
		$\binom{k-k_1}{k_2}\binom{k-k_1-k_2}{k_3}$	
		$\cdots {k_n+k_{n-1} \choose k_{n-1}}$	
k unlabeled	B:	D, D':	-
(unordered) balls	$\binom{n}{k}$	$\binom{k+n-1}{k} = \binom{k+n-1}{n-1}$	
		and $\binom{k-1}{n-1} = \binom{k-1}{k-n}$	
unlimited balls,		E	C:
k different labels			k^n
(order matters)			

Name:

1. Is the product of two odd numbers even or odd? Prove it. (Direct proof)

2. Consider the sets

$$A = \{3, 8, 12, 15, 23, 75\}$$

$$B = \{4, 10, 15, 20\}$$

$$C = \{3, 4, 12, 15, 23\}$$

$$D = \{3, 12, 23\}$$

- a. List the elements of $A \cup C$
- b. List the elements of $A \cap D$
- c. List the elements of $A \setminus C$ (aka A C)
- d. List the elements of $B \times D$

Name:

- 3. Given sets $A = \{a, b, c\}$ and $B = \{4, 7\}$
 - a. Show all functions from set A to set B

- b. Which of those functions are 1 to 1? Or explain why none exists
- c. Which of those functions are onto? Or explain why none exists

d. How many functions are there from a set of 25 elements to a set of 8 elements?

4. Use DeMorgan's laws to find

a.
$$\overline{A \cup B \cup C} =$$

b.
$$\overline{A \cap B \cup \overline{C}} =$$

Name:

5. Make a truth table to represent $(P \lor Q) \land R$

6. Draw a graph with degree sequence (1, 2, 2, 3, 4)

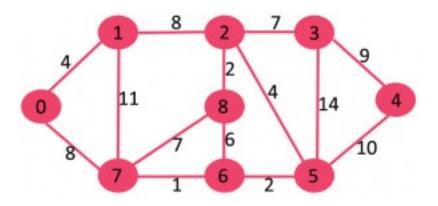
7. How many edges are in a star graph with *n* vertices? Explain your answer.

Name:

8. Use induction to show that

a.
$$3\sum_{i=1}^{n} j(j-1) = n(n-1)(n-2)$$

- 9. Which of the following are equivalence classes? Circle the ones that meet the criteria. For the ones that are not equivalence classes, say what condition(s) fail.
 - a. All ducks of the same color
 - b. |a b| < 8
 - c. Integers mod 5
 - d. Integers x, y such that $x^2 < y^2$

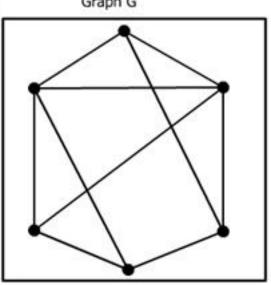

Name:

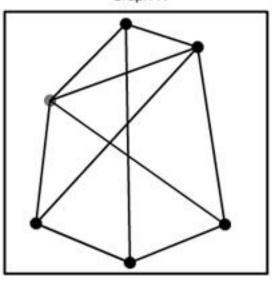
10. Draw the first five rows of Pascal's triangle

11. What is the term containing y^5 in the expansion of $(3x + 4y)^7$

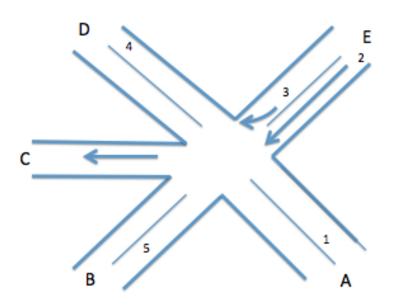
12. How many anagrams are there (including those that are not dictionary words) of COMPUTER?

13. Given this graph, use Dijkstra's algorithm to find the shortest path from node O to **all other nodes**. Show your work clearly. Just giving the answer will not be accepted. <u>YOU MUST CLEARLY SHOW THE STEPS OF THE DIJKSTRA ALGORITHM</u>.

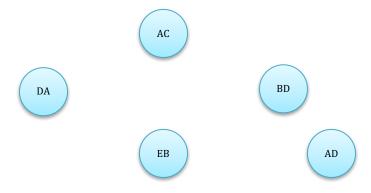

Show your results on the graph. Each entry should show the path length (total weight to that node) and the previous node on the shortest path from O.


Don – Showing the results on the graph might encourage following the algorithm steps?

Name:	


Are these graphs isomorphic? If so, label the vertices to 14. show the equivalence. If not, say what requirement(s) are missing?

Graph G Graph H



15. This diagram shows a traffic intersection. Rather than draw the whole graph that represents it (which would be very dense), answer some questions about the setup.

- a. Draw in the traffic lanes, showing where potential conflicts arise. For example, traffic coming from part A of the graph could go to B or C or D. There are two lanes in part B. Show their full paths. Continue around the figure, showing all the places traffic can go.
- b. Now, here is a graph representing some of the conflicts for traffic in this intersection. The vertices are labeled with the start and end graph area. For example, Vertex AE represents traffic coming from A and turning into E. Draw the necessary edges between pairs of vertices here.
- c. In the five vertex subgraph you drew, what is the smallest number of traffic signals controlling this intersection. Explain your reasoning.

