Name:	
-------	--

CSC 1300 Spring 2013 Exam 1 of 3

100 points. No devices with on/off switches, books, notes or other aids allowed. Villanova University academic integrity policy governs conduct of this exam.

Credit will be given only for legible work, clearly associated with a problem solution. Page backs are for scrap work and will not be considered part of the answers.

Some term or notation helps:

For sets, $A \setminus B$ is also written as A - B, |A| is the size (cardinality) of A A function is 1 to 1 if each element of the domain maps to a distinct element in the target. A function is onto if there is a mapping to every element of the target.

- 1. Express clearly each of these. (You do not need to compute the actual number, but must show the result clearly. Also, you may not just put a number as the answer, but must show where the number comes from.)
 - a. How many 10-digit phone numbers are there?
 - b. How many 10-digit phone numbers are there that have no 9s?
 - c. How many 10-digit phone numbers are there that have at least one 9?
- 2. Prove that n^2 is odd iff n is odd.

Name:

- 3. Suppose your deck of cards is standard: four suits, each with the values ace, king, queen, jack and 10 down to 2.
 - a. How many cards would you need to draw to be assured that you get at least two of the same suit?
 - b. How many to be assured that you get at least two of the same value?
- 4. Let $A = \{-3, 15, 42\}$ $B = \{k \in \mathbb{N} \mid k / 3 \in \mathbb{N}\}$ $C = \{3, 6, 9, 12\}$
 - a. How many subsets **of** *A* are there? _____
 - b. Find $\mathcal{P}(A)$, the power set **of** A.

- c. How many elements are in the power set of *D* if *D* has m elements?
- d. Circle each of the statements below that are true.

$$A \subseteq B$$

$$B \cap A = \emptyset$$
 $C \subseteq B$ $C \cap B = C$

$$C \subseteq B$$

$$C \cap B = C$$

- 5. Given sets $A = \{a, b, c\}$ and $B = \{4, 7\}$
 - a. Show all functions from set A to set B

- b. Which of those functions are 1 to 1? Or explain why none exists
- c. Which of those functions are onto? Or explain why none exists

- d. How many functions are there from a set of 25 elements to a set of 8 elements?
- 6. One version of DeMorgan's law: $\neg(p \land q)$ is equivalent to $\neg p \lor \neg q$.
 - a. Prove this using truth tables.

b. Write the equivalent law for sets, using A and B as the set names.

Name: _____

7. Let $A_k = \{0, 1, ... k\}$

b. What is

$$\bigcup_{i=1}^{n} A_i$$

8. Are these graphs isomorphic? If no, point out why. If yes, label the second graph to show the corresponding vertices.

- 9. Given the graph shown here
 - a. What is the degree sequence?
 - b. Show the adjacency matrix.

- 10. Consider the graph known as K_4
 - a. Sketch it

- b. Is it simple? Explain.
- c. Is it regular? Explain.
- d. Verify that the handshaking lemma holds.